Labour Day Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

MLS-C01 Questions Bank

Page: 19 / 20
Total 281 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 73

A machine learning (ML) specialist is administering a production Amazon SageMaker endpoint with model monitoring configured. Amazon SageMaker Model Monitor detects violations on the SageMaker endpoint, so the ML specialist retrains the model with the latest dataset. This dataset is statistically representative of the current production traffic. The ML specialist notices that even after deploying the new SageMaker model and running the first monitoring job, the SageMaker endpoint still has violations.

What should the ML specialist do to resolve the violations?

Options:

A.

Manually trigger the monitoring job to re-evaluate the SageMaker endpoint traffic sample.

B.

Run the Model Monitor baseline job again on the new training set. Configure Model Monitor to use the new baseline.

C.

Delete the endpoint and recreate it with the original configuration.

D.

Retrain the model again by using a combination of the original training set and the new training set.

Question 74

An e commerce company wants to launch a new cloud-based product recommendation feature for its web application. Due to data localization regulations, any sensitive data must not leave its on-premises data center, and the product recommendation model must be trained and tested using nonsensitive data only. Data transfer to the cloud must use IPsec. The web application is hosted on premises with a PostgreSQL database that contains all the data. The company wants the data to be uploaded securely to Amazon S3 each day for model retraining.

How should a machine learning specialist meet these requirements?

Options:

A.

Create an AWS Glue job to connect to the PostgreSQL DB instance. Ingest tables without sensitive data through an AWS Site-to-Site VPN connection directly into Amazon S3.

B.

Create an AWS Glue job to connect to the PostgreSQL DB instance. Ingest all data through an AWS Site- to-Site VPN connection into Amazon S3 while removing sensitive data using a PySpark job.

C.

Use AWS Database Migration Service (AWS DMS) with table mapping to select PostgreSQL tables with no sensitive data through an SSL connection. Replicate data directly into Amazon S3.

D.

Use PostgreSQL logical replication to replicate all data to PostgreSQL in Amazon EC2 through AWS Direct Connect with a VPN connection. Use AWS Glue to move data from Amazon EC2 to Amazon S3.

Question 75

A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?

Options:

A.

Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.

B.

Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.

C.

Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.

D.

Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.

Question 76

A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process it, and upload it back to the same S3 bucket. The preprocessing code is stored in a container image in Amazon Elastic Container Registry (Amazon ECR). The ML specialist needs to grant permissions to ensure a smooth data preprocessing workflow.

Which set of actions should the ML specialist take to meet these requirements?

Options:

A.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs, S3 read and write access to the relevant S3 bucket, and appropriate KMS and ECR permissions. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job from the notebook.

B.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Create an Amazon SageMaker Processing job with an IAM role that has read and write permissions to the relevant S3 bucket, and appropriate KMS and ECR permissions.

C.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs and to access Amazon ECR. Attach the role to the SageMaker notebook instance. Set up both an S3 endpoint and a KMS endpoint in the default VPC. Create Amazon SageMaker Processing jobs from the notebook.

D.

Create an IAM role that has permissions to create Amazon SageMaker Processing jobs. Attach the role to the SageMaker notebook instance. Set up an S3 endpoint in the default VPC. Create Amazon SageMaker Processing jobs with the access key and secret key of the IAM user with appropriate KMS and ECR permissions.

Page: 19 / 20
Total 281 questions