Amazon Web Services Related Exams
MLS-C01 Exam

The Amazon Web Services MLS-C01 exam is ideal for individuals with at least two years of hands-on experience developing, architecting, and running machine learning (ML) or deep learning (DL) workloads on the AWS Cloud. It caters to professionals like:
The Amazon Web Services MLS-C01 exam delves into various aspects of building, training, deploying, and managing ML workloads on AWS. Key areas include:
Here's a comparison between the Amazon Web Services Certified Machine Learning - Specialty (MLS-C01) Exam and the Amazon Web Services Certified Alexa Skill Builder - Specialty (AXS-C01) Exam:
A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.
Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)
A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy
Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?
A Machine Learning Specialist is required to build a supervised image-recognition model to identify a cat. The ML Specialist performs some tests and records the following results for a neural network-based image classifier:
Total number of images available = 1,000 Test set images = 100 (constant test set)
The ML Specialist notices that, in over 75% of the misclassified images, the cats were held upside down by their owners.
Which techniques can be used by the ML Specialist to improve this specific test error?