Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Legit MLS-C01 Exam Download

Page: 15 / 24
Total 330 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 57

A data scientist has a dataset of machine part images stored in Amazon Elastic File System (Amazon EFS). The data scientist needs to use Amazon SageMaker to create and train an image classification machine learning model based on this dataset. Because of budget and time constraints, management wants the data scientist to create and train a model with the least number of steps and integration work required.

How should the data scientist meet these requirements?

Options:

A.

Mount the EFS file system to a SageMaker notebook and run a script that copies the data to an Amazon FSx for Lustre file system. Run the SageMaker training job with the FSx for Lustre file system as the data source.

B.

Launch a transient Amazon EMR cluster. Configure steps to mount the EFS file system and copy the data to an Amazon S3 bucket by using S3DistCp. Run the SageMaker training job with Amazon S3 as the data source.

C.

Mount the EFS file system to an Amazon EC2 instance and use the AWS CLI to copy the data to an Amazon S3 bucket. Run the SageMaker training job with Amazon S3 as the data source.

D.

Run a SageMaker training job with an EFS file system as the data source.

Question 58

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

Options:

A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

Question 59

A company uses sensors on devices such as motor engines and factory machines to measure parameters, temperature and pressure. The company wants to use the sensor data to predict equipment malfunctions and reduce services outages.

The Machine learning (ML) specialist needs to gather the sensors data to train a model to predict device malfunctions The ML spoctafst must ensure that the data does not contain outliers before training the ..el.

What can the ML specialist meet these requirements with the LEAST operational overhead?

Options:

A.

Load the data into an Amazon SagcMaker Studio notebook. Calculate the first and third quartile Use a SageMaker Data Wrangler data (low to remove only values that are outside of those quartiles.

B.

Use an Amazon SageMaker Data Wrangler bias report to find outliers in the dataset Use a Data Wrangler data flow to remove outliers based on the bias report.

C.

Use an Amazon SageMaker Data Wrangler anomaly detection visualization to find outliers in the dataset. Add a transformation to a Data Wrangler data flow to remove outliers.

D.

Use Amazon Lookout for Equipment to find and remove outliers from the dataset.

Question 60

A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.

Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)

Options:

A.

Use SageMaker Clarify to automatically detect data bias

B.

Turn on the bias detection option in SageMaker Ground Truth to automatically analyze data features.

C.

Use SageMaker Model Monitor to generate a bias drift report.

D.

Configure SageMaker Data Wrangler to generate a bias report.

E.

Use SageMaker Experiments to perform a data check

Page: 15 / 24
Total 330 questions