Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free MLS-C01 Amazon Web Services Updates

Page: 16 / 24
Total 330 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 61

A Machine Learning Specialist is applying a linear least squares regression model to a dataset with 1 000 records and 50 features Prior to training, the ML Specialist notices that two features are perfectly linearly dependent

Why could this be an issue for the linear least squares regression model?

Options:

A.

It could cause the backpropagation algorithm to fail during training

B.

It could create a singular matrix during optimization which fails to define a unique solution

C.

It could modify the loss function during optimization causing it to fail during training

D.

It could introduce non-linear dependencies within the data which could invalidate the linear assumptions of the model

Question 62

A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not

Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?

Options:

A.

Seq2seq

B.

XGBoost

C.

K-means

D.

Random Cut Forest (RCF)

Question 63

A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions

What metric is BEST suited to score the model?

Options:

A.

Precision

B.

Recall

C.

Area Under the ROC Curve (AUC)

D.

Root Mean Square Error (RMSE)

Question 64

A company wants to detect credit card fraud. The company has observed that an average of 2% of credit card transactions are fraudulent. A data scientist trains a classifier on a year's worth of credit card transaction data. The classifier needs to identify the fraudulent transactions. The company wants to accurately capture as many fraudulent transactions as possible.

Which metrics should the data scientist use to optimize the classifier? (Select TWO.)

Options:

A.

Specificity

B.

False positive rate

C.

Accuracy

D.

Fl score

E.

True positive rate

Page: 16 / 24
Total 330 questions