Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

MLS-C01 VCE Exam Download

Page: 20 / 24
Total 330 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 77

A machine learning (ML) specialist wants to secure calls to the Amazon SageMaker Service API. The specialist has configured Amazon VPC with a VPC interface endpoint for the Amazon SageMaker Service API and is attempting to secure traffic from specific sets of instances and IAM users. The VPC is configured with a single public subnet.

Which combination of steps should the ML specialist take to secure the traffic? (Choose two.)

Options:

A.

Add a VPC endpoint policy to allow access to the IAM users.

B.

Modify the users' IAM policy to allow access to Amazon SageMaker Service API calls only.

C.

Modify the security group on the endpoint network interface to restrict access to the instances.

D.

Modify the ACL on the endpoint network interface to restrict access to the instances.

E.

Add a SageMaker Runtime VPC endpoint interface to the VPC.

Question 78

A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.

Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)

Options:

A.

AWS CloudTrail

B.

AWS Health

C.

AWS Trusted Advisor

D.

Amazon CloudWatch

E.

AWS Config

Question 79

A Machine Learning Specialist works for a credit card processing company and needs to predict which

transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the

probability that a given transaction may fraudulent.

How should the Specialist frame this business problem?

Options:

A.

Streaming classification

B.

Binary classification

C.

Multi-category classification

D.

Regression classification

Question 80

A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

Options:

A.

Create new features and interaction variables.

B.

Use a principal component analysis (PCA) model.

C.

Apply normalization on the feature set.

D.

Use a multiple correspondence analysis (MCA) model

Page: 20 / 24
Total 330 questions