A retail company uses a machine learning (ML) model for daily sales forecasting. The company’s brand manager reports that the model has provided inaccurate results for the past 3 weeks.
At the end of each day, an AWS Glue job consolidates the input data that is used for the forecasting with the actual daily sales data and the predictions of the model. The AWS Glue job stores the data in Amazon S3. The company’s ML team is using an Amazon SageMaker Studio notebook to gain an understanding about the source of the model's inaccuracies.
What should the ML team do on the SageMaker Studio notebook to visualize the model's degradation MOST accurately?
A company is creating an application to identify, count, and classify animal images that are uploaded to the company’s website. The company is using the Amazon SageMaker image classification algorithm with an ImageNetV2 convolutional neural network (CNN). The solution works well for most animal images but does not recognize many animal species that are less common.
The company obtains 10,000 labeled images of less common animal species and stores the images in Amazon S3. A machine learning (ML) engineer needs to incorporate the images into the model by using Pipe mode in SageMaker.
Which combination of steps should the ML engineer take to train the model? (Choose two.)
A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant
Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?
A tourism company uses a machine learning (ML) model to make recommendations to customers. The company uses an Amazon SageMaker environment and set hyperparameter tuning completion criteria to MaxNumberOfTrainingJobs.
An ML specialist wants to change the hyperparameter tuning completion criteria. The ML specialist wants to stop tuning immediately after an internal algorithm determines that tuning job is unlikely to improve more than 1% over the objective metric from the best training job.
Which completion criteria will meet this requirement?