Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

AWS Certified Specialty MLS-C01 Amazon Web Services Study Notes

Page: 9 / 24
Total 330 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 33

An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.

Which approach should the ML specialist use to improve the performance of the model on the testing data?

Options:

A.

Increase the value of the momentum hyperparameter.

B.

Reduce the value of the dropout_rate hyperparameter.

C.

Reduce the value of the learning_rate hyperparameter.

D.

Increase the value of the L2 hyperparameter.

Question 34

A data scientist must build a custom recommendation model in Amazon SageMaker for an online retail company. Due to the nature of the company's products, customers buy only 4-5 products every 5-10 years. So, the company relies on a steady stream of new customers. When a new customer signs up, the company collects data on the customer's preferences. Below is a sample of the data available to the data scientist.

How should the data scientist split the dataset into a training and test set for this use case?

Options:

A.

Shuffle all interaction data. Split off the last 10% of the interaction data for the test set.

B.

Identify the most recent 10% of interactions for each user. Split off these interactions for the test set.

C.

Identify the 10% of users with the least interaction data. Split off all interaction data from these users for the test set.

D.

Randomly select 10% of the users. Split off all interaction data from these users for the test set.

Question 35

A company decides to use Amazon SageMaker to develop machine learning (ML) models. The company will host SageMaker notebook instances in a VPC. The company stores training data in an Amazon S3 bucket. Company security policy states that SageMaker notebook instances must not have internet connectivity.

Which solution will meet the company's security requirements?

Options:

A.

Connect the SageMaker notebook instances that are in the VPC by using AWS Site-to-Site VPN to encrypt all internet-bound traffic. Configure VPC flow logs. Monitor all network traffic to detect and prevent any malicious activity.

B.

Configure the VPC that contains the SageMaker notebook instances to use VPC interface endpoints to establish connections for training and hosting. Modify any existing security groups that are associated with the VPC interface endpoint to only allow outbound connections for training and hosting.

C.

Create an IAM policy that prevents access to the internet. Apply the IAM policy to an IAM role. Assign the IAM role to the SageMaker notebook instances in addition to any IAM roles that are already assigned to the instances.

D.

Create VPC security groups to prevent all incoming and outgoing traffic. Assign the security groups to the SageMaker notebook instances.

Question 36

An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers

want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored

for offline analysis.

What approach would be the MOST effective to perform near-real time defect detection?

Options:

A.

Use AWS IoT Analytics for ingestion, storage, and further analysis. Use Jupyter notebooks from withinAWS IoT Analytics to carry out analysis for anomalies.

B.

Use Amazon S3 for ingestion, storage, and further analysis. Use an Amazon EMR cluster to carry outApache Spark ML k-means clustering to determine anomalies.

C.

Use Amazon S3 for ingestion, storage, and further analysis. Use the Amazon SageMaker Random CutForest (RCF) algorithm to determine anomalies.

D.

Use Amazon Kinesis Data Firehose for ingestion and Amazon Kinesis Data Analytics Random Cut Forest(RCF) to perform anomaly detection. Use Kinesis Data Firehose to store data in Amazon S3 for furtheranalysis.

Page: 9 / 24
Total 330 questions