Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free and Premium Amazon Web Services SAP-C02 Dumps Questions Answers

Page: 1 / 44
Total 614 questions

AWS Certified Solutions Architect - Professional Questions and Answers

Question 1

A company is running an application in the AWS Cloud. The application collects and stores a large amount of unstructured data in an Amazon S3 bucket. The S3 bucket contains several terabytes of data and uses the S3 Standard storage class. The data increases in size by several gigabytes every day.

The company needs to query and analyze the data. The company does not access data that is more than 1-year-old. However, the company must retain all the data indefinitely for compliance reasons.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use S3 Select to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

B.

Use Amazon Redshift Spectrum to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

C.

Use an AWS Glue Data Catalog and Amazon Athena to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Glacier Deep Archive.

D.

Use Amazon Redshift Spectrum to query the data. Create an S3 Lifecycle policy to transition data that is more than 1 year old to S3 Intelligent-Tiering.

Buy Now
Question 2

A solutions architect is designing a solution to process events. The solution must have the ability to scale in and out based on the number of events that the solution receives. If a processing error occurs, the event must move into a separate queue for review.

Which solution will meet these requirements?

Options:

A.

Send event details to an Amazon Simple Notification Service (Amazon SNS) topic. Configure an AWS Lambda function as a subscriber to the SNS topic to process the events. Add an on-failure destination to the function. Set an Amazon Simple Queue Service (Amazon SQS) queue as the target.

B.

Publish events to an Amazon Simple Queue Service (Amazon SQS) queue. Create an Amazon EC2 Auto Scaling group. Configure the Auto Scaling group to scale in and out based on the ApproximateAgeOfOldestMessage metric of the queue. Configure the application to write failed messages to a dead-letter queue.

C.

Write events to an Amazon DynamoDB table. Configure a DynamoDB stream for the table. Configure the stream to invoke an AWS Lambda function. Configure the Lambda function to process the events.

D.

Publish events to an Amazon EventBridge event bus. Create and run an application on an Amazon EC2 instance with an Auto Scaling group that isbehind an Application Load Balancer (ALB). Set the ALB as the event bus target. Configure the event bus to retry events. Write messages to a dead-letter queue if the application cannot process the messages.

Question 3

A global media company is planning a multi-Region deployment of an application. Amazon DynamoDB global tables will back the deployment to keep the user experience consistent across the two continents where users are concentrated. Each deployment will have a public Application Load Balancer (ALB). The company manages public DNS internally. The company wants to make the application available through an apex domain.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Migrate public DNS to Amazon Route 53. Create CNAME records for the apex domain to point to the ALB. Use a geolocation routing policy to route traffic based on user location.

B.

Place a Network Load Balancer (NLB) in front of the ALB. Migrate public DNS to Amazon Route 53. Create a CNAME record for the apex domain to point to the NLB's static IP address. Use a geolocation routing policy to route traffic based on user location.

C.

Create an AWS Global Accelerator accelerator with multiple endpoint groups that target endpoints in appropriate AWS Regions. Use the accelerator's static IP address to create a record in public DNS for the apex domain.

D.

Create an Amazon API Gateway API that is backed by AWS Lambda in one of the AWS Regions. Configure a Lambda function to route traffic to application deployments by using the round robin method. Create CNAME records for the apex domain to point to the API's URL.

Question 4

A company used Amazon EC2 instances to deploy a web fleet to host a blog site The EC2 instances are behind an Application Load Balancer (ALB) and are configured in an Auto ScaSng group The web application stores all blog content on an Amazon EFS volume.

The company recently added a feature 'or Moggers to add video to their posts, attracting 10 times the previous user traffic At peak times of day. users report buffering and timeout issues while attempting to reach the site or watch videos

Which is the MOST cost-efficient and scalable deployment that win resolve the issues for users?

Options:

A.

Reconfigure Amazon EFS to enable maximum I/O.

B.

Update the Nog site to use instance store volumes tor storage. Copy the site contents to the volumes at launch and to Amazon S3 al shutdown.

C.

Configure an Amazon CloudFront distribution. Point the distribution to an S3 bucket, and migrate the videos from EFS to Amazon S3.

D.

Set up an Amazon CloudFront distribution for all site contents, and point the distribution at the ALB.

Question 5

A company plans to migrate a legacy on-premises application to AWS. The application is a Java web application that runs on Apache Tomcat with a PostgreSQL database.

The company does not have access to the source code but can deploy the application Java Archive (JAR) files. The application has increased traffic at the end of each month.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Launch Amazon EC2 instances in multiple Availability Zones. Deploy Tomcat and PostgreSQL to all the instances by using Amazon EFS mount points. Use AWS Step Functions to deploy additional EC2 instances to scale for increased traffic.

B.

Provision Amazon EKS in an Auto Scaling group across multiple AWS Regions. Deploy Tomcat and PostgreSQL in the container images. Use a Network Load Balancer to scale for increased traffic.

C.

Refactor the Java application into Python-based containers. Use AWS Lambda functions for the application logic. Store application data in Amazon DynamoDB global tables. Use AWS Storage Gateway and Lambda concurrency to scale for increased traffic.

D.

Use AWS Elastic Beanstalk to deploy the Tomcat servers with auto scaling in multiple Availability Zones. Store application data in an Amazon RDS for PostgreSQL database. Deploy Amazon CloudFront and an Application Load Balancer to scale for increased traffic.

Question 6

A company is migrating to AWS and needs to inventory physical and virtual servers, apps, and database relationships to properly rightsize and plan migration.

Options:

A.

Use Migration Evaluator with Agentless Collector.

B.

Use Migration Hub with Discovery Agent and Strategy Recommendations.

C.

Use Migration Hub with Agentless Collector and Migration Service.

D.

Use Migration Hub import tool.

Question 7

A solutions architect needs to migrate an on-premises legacy application to AWS. The application runs on two servers behind a bad balancer. The application requires a license file that is associated with the MAC address of the server's network adapter. It takes the software vendor 12 hours to send new license files. The application also uses configuration files with a static IP address to access a database host names are not supported.

Given these requirements. which combination of steps should be taken to implement highly available architecture for the application servers in AWS? (Select TWO.)

Options:

A.

Create a pool of ENIs. Request license files from the vendor for the pool, and store the license files in Amazon $3. Create a bootstrap automation script to download a license file and attach the corresponding ENI to anAmazon EC2 instance.

B.

Create a pool of ENIs. Request license files from the vendor for the pool, store the license files on an Amazon EC2 instance. Create an AMI from the instance and use this AMI for all future EC2

C.

Create a bootstrap automation script to request a new license file from the vendor. When the response is received, apply the license file to an Amazon EC2 instance.

D.

Edit the bootstrap automation script to read the database server IP address from the AWS Systems Manager Parameter Store. and inject the value into the local configuration files.

E.

Edit an Amazon EC2 instance to include the database server IP address in the configuration files and re-create the AMI to use for all future EC2 instances.

Question 8

A solutions architect is importing a VM from an on-premises environment by using the Amazon EC2 VM Import feature of AWS Import/Export. The solutions architect has created an AMI and has provisioned an Amazon EC2 instance that is based on that AMI. The EC2 instance runs inside a public subnet in a VPC and has a public IP address assigned.

The EC2 instance does not appear as a managed instance in the AWS Systems Manager console.

Which combination of steps should the solutions architect take to troubleshoot this issue? (Select TWO.)

Options:

A.

Verify that Systems Manager Agent is installed on the instance and is running.

B.

Verify that the instance is assigned an appropriate IAM role for Systems Manager.

C.

Verify the existence of a VPC endpoint on the VPC.

D.

Verify that the AWS Application Discovery Agent is configured.

E.

Verify the correct configuration of service-linked roles for Systems Manager.

Question 9

A solutions architect is reviewing an application's resilience before launch. The application runs on an Amazon EC2 instance that is deployed in a private subnet of a VPC.

The EC2 instance is provisioned by an Auto Scaling group that has a minimum capacity of I and a maximum capacity of I. The application stores data on an Amazon RDS for MySQL DB instance. The VPC has subnets configured in three Availability Zones and is configured with a single NAT gateway.

The solutions architect needs to recommend a solution to ensure that the application will operate across multiple Availability Zones.

Which solution will meet this requirement?

Options:

A.

Deploy an additional NAT gateway in the other Availability Zones. Update the route tables with appropriate routes. Modify the RDS for MySQL DB instance to aMulti-AZ configuration. Configure the Auto Scaling group to launch instances across Availability Zones. Set the minimum capacity and maximum capacity of theAuto Scaling group to 3.

B.

Replace the NAT gateway with a virtual private gateway. Replace the RDS for MySQL DB instance with an Amazon Aurora MySQL DB cluster. Configure theAuto Scaling group to launch instances across all subnets in the VPC. Set the minimum capacity and maximum capacity of the Auto Scaling group to 3.

C.

Replace the NAT gateway with a NAT instance. Migrate the RDS for MySQL DB instance to an RDS for PostgreSQL DB instance. Launch a new EC2 instance in the other Availability Zones.

D.

Deploy an additional NAT gateway in the other Availability Zones. Update the route tables with appropriate routes. Modify the RDS for MySQL DB instance toturn on automatic backups and retain the backups for 7 days. Configure the Auto Scaling group to launch instances across all subnets in the VPC. Keeptheminimum capacity and the maximum capacity of the Auto Scaling group at 1.

Question 10

A company is using AWS CodePipeline for the CI/CD of an application to an Amazon EC2 Auto Scaling group. All AWS resources are defined in AWS

CloudFormation templates. The application artifacts are stored in an Amazon S3 bucket and deployed to the Auto Scaling group using instance user data scripts.

As the application has become more complex, recent resource changes in the CloudFormation templates have caused unplanned downtime.

How should a solutions architect improve the CI/CD pipeline to reduce the likelihood that changes in the templates will cause downtime?

Options:

A.

Adapt the deployment scripts to detect and report CloudFormation error conditions when performing deployments. Write test plans for a testing team to execute in a non-production environment before approving the change for production.

B.

Implement automated testing using AWS CodeBuild in a test environment. Use CloudFormation change sets to evaluate changes before deployment. Use AWS CodeDeploy to leverage blue/green deployment patterns to allow evaluations and the ability to revert changes, if needed.

C.

Use plugins for the integrated development environment (IDE) to check the templates for errors, and use the AWS CLI to validate that the templates are correct. Adapt the deployment code to check for error conditions and generate notifications on errors. Deploy to a test environment and execute a manual test plan before approving the change for production.

D.

Use AWS CodeDeploy and a blue/green deployment pattern with CloudFormation to replace the user data deployment scripts. Have the operators log in to running instances and go through a manual test plan to verify the application is running as expected.

Question 11

A company is migrating an on-premises application and a MySQL database to AWS. The application processes highly sensitive data, and new data is constantly updated in the database. The data must not be transferred over the internet. The company also must encrypt the data in transit and at rest.

The database is 5 TB in size. The company already has created the database schema in an Amazon RDS for MySQL DB instance. The company has set up a 1 Gbps AWS Direct Connect connection to AWS. The company also has set up a public VIF and a private VIF. A solutions architect needs to design a solution that will migrate the data to AWS with the least possible downtime.

Which solution will meet these requirements?

Options:

A.

Perform a database backup. Copy the backup files to an AWS Snowball Edge Storage Optimized device. Import the backup to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

B.

Use AWS Database Migration Service (AWS DMS) to migrate the data to AWS. Create a DMS replication instance in a private subnet. Create VPC endpoints for AWS DMS. Configure a DMS task to copy data from the on-premises database to the DB instance by using full load plus change data capture (CDC). Use the AWS Key Management Service (AWS KMS) default key for encryption at rest. Use TLS for encryption in transit.

C.

Perform a database backup. Use AWS DataSync to transfer the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

D.

Use Amazon S3 File Gateway. Set up a private connection to Amazon S3 by using AWS PrivateLink. Perform a database backup. Copy the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

Question 12

A company is planning to migrate its on-premises transaction-processing application to AWS. The application runs inside Docker containers that are hosted on VMS in the company's data center. The Docker containers have shared storage where the application records transaction data.

The transactions are time sensitive. The volume of transactions inside the application is unpredictable. The company must implement a low-latency storage solution that will automatically scale throughput to meet increased demand. The company cannot develop the application further and cannot continue to administer the Docker hosting environment.

How should the company migrate the application to AWS to meet these requirements?

Options:

A.

Migrate the containers that run the application to Amazon Elastic Kubernetes Service (Amazon EKS). Use Amazon S3 to store the transaction data that the containers share.

B.

Migrate the containers that run the application to AWS Fargate for Amazon Elastic Container Service (Amazon ECS). Create an Amazon Elastic File System (Amazon EFS) file system. Create a Fargate task definition. Add a volume to the task definition to point to the EFS file system

C.

Migrate the containers that run the application to AWS Fargate for Amazon Elastic Container Service (Amazon ECS). Create an Amazon Elastic Block Store (Amazon EBS) volume. Create a Fargate task definition. Attach the EBS volume to each running task.

D.

Launch Amazon EC2 instances. Install Docker on the EC2 instances. Migrate the containers to the EC2 instances. Create an Amazon Elastic File System (Amazon EFS) file system. Add a mount point to the EC2 instances for the EFS file system.

Question 13

A company is planning to migrate an application to AWS. The application runs as a Docker container and uses an NFS version 4 file share.

A solutions architect must design a secure and scalable containerized solution that does not require provisioning or management of the underlying infrastructure.

Which solution will meet these requirements?

Options:

A.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type. Use Amazon Elastic File System (Amazon EFS) for shared storage. Reference the EFS file system ID, container mount point, and EFS authorization IAM role in the ECS task definition.

B.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type. Use Amazon FSx for Lustre for shared storage. Reference the FSx for Lustre file system ID, container mount point, and FSx for Lustre authorization IAM role in the ECS task definition.

C.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Amazon EC2 launch type and auto scaling turned on. Use Amazon Elastic File System (Amazon EFS) for shared storage. Mount the EFS file system on the ECS container instances. Add the EFS authorization IAM role to the EC2 instance profile.

D.

Deploy the application containers by using Amazon Elastic Container Service (Amazon ECS) with the Amazon EC2 launch type and auto scaling turned on. Use Amazon Elastic Block Store (Amazon EBS) volumes with Multi-Attach enabled for shared storage. Attach the EBS volumes to ECS container instances. Add the EBS authorization IAM role to an EC2 instance profile.

Question 14

A company has developed a mobile game. The backend for the game runs on several virtual machines located in an on-premises data center. The business logic is exposed using a REST API with multiple functions. Player session data is stored in central file storage. Backend services use different API keys for throttling and to distinguish between live and test traffic.

The load on the game backend varies throughout the day. During peak hours, the server capacity is not sufficient. There are also latency issues when fetching player session data. Management has asked a solutions architect to present a cloud architecture that can handle the game's varying load and provide low-latency data access. The API model should not be changed.

Which solution meets these requirements?

Options:

A.

Implement the REST API using a Network Load Balancer (NLB). Run the business logic on an Amazon EC2 instance behind the NLB. Store player session data in Amazon Aurora Serverless.

B.

Implement the REST API using an Application Load Balancer (ALB). Run the business logic in AWS Lambda. Store player session data in Amazon DynamoDB with on-demand capacity.

C.

Implement the REST API using Amazon API Gateway. Run the business logic in AWS Lambda. Store player session data in Amazon DynamoDB with on- demand capacity.

D.

Implement the REST API using AWS AppSync. Run the business logic in AWS Lambda. Store player session data in Amazon Aurora Serverless.

Question 15

A company’s web application uses an Amazon API Gateway API, AWS Lambda functions, and Amazon DynamoDB global tables to handle backend requests. The web application is deployed in two AWS Regions in an active-passive model. The company uses Amazon Route 53 for DNS. The web application requires a manual DNS update to fail over to the secondary Region. An analytics Lambda function runs in the same AWS account. The function has caused Lambda concurrency to reach 90% of the current quota on an average day. A recent surge in traffic for the analytics workload resulted in throttled Lambda requests and a poor user experience for the web application users. A solutions architect must increase the reliability of the web application. The solution must use an Amazon CloudWatch alarm to send an Amazon SNS notification when the Lambda concurrency reaches a specific utilization threshold. Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Set reserved concurrency on the web application Lambda functions. Implement Route 53 health checks and failover records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the AWS Trusted Advisor ServiceLimitUsage metric and to send the SNS notification.

B.

Set reserved concurrency on the web application Lambda functions. Implement Route 53 health checks and latency records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the AWS Trusted Advisor ServiceLimitUsage metric and to send an SNS notification.

C.

Set provisioned concurrency on the web application Lambda functions. Implement Route 53 health checks and failover records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the Lambda ConcurrentExecutions metric and to send an SNS notification.

D.

Set provisioned concurrency on the web application Lambda functions. Implement Route 53 health checks and geolocation records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the Lambda ProvisionedConcurrencyInvocations metric and to send an SNS notification.

Question 16

A company wants to migrate virtual Microsoft workloads from an on-premises data center to AWS The company has successfully tested a few sample workloads on AWS. The company also has created an AWS Site-to-Site VPN connection to a VPC A solutions architect needs to generate a total cost of ownership (TCO) report for the migration of all the workloads from the data center

Simple Network Management Protocol (SNMP) has been enabled on each VM in the data center The company cannot add more VMs m the data center and cannot install additional software on the VMs The discovery data must be automatically imported into AWS Migration Hub

Which solution will meet these requirements?

Options:

A.

Use the AWS Application Migration Service agentless service and the AWS Migration Hub Strategy Recommendations to generate the TCO report

B.

Launch a Windows Amazon EC2 instance Install the Migration Evaluator agentless collector on the EC2 instance Configure Migration Evaluator to generate the TCO report

C.

Launch a Windows Amazon EC2 instance. Install the Migration Evaluator agentless collector on the EC2 instance. Configure Migration Hub to generate the TCO report

D.

Use the AWS Migration Readiness Assessment tool inside the VPC Configure Migration Evaluator to generate the TCO report

Question 17

A company has an application that stores user-uploaded videos in an Amazon S3 bucket that uses S3 Standard storage. Users access the videos frequently in the first 180 days after the videos are uploaded. Access after 180 days is rare. Named users and anonymous users access the videos. Most of the videos are more than 100 MB in size. Users often have poor internet connectivity when they upload videos, resulting in failed uploads. The company uses multipart uploads for the videos. A solutions architect needs to optimize the S3 costs of the application. Which combination of actions will meet these requirements? (Select TWO.)

Options:

A.

Configure the S3 bucket to be a Requester Pays bucket.

B.

Use S3 Transfer Acceleration to upload the videos to the S3 bucket.

C.

Create an S3 Lifecycle configuration to expire incomplete multipart uploads 7 days after initiation.

D.

Create an S3 Lifecycle configuration to transition objects to S3 Glacier Instant Retrieval after 1 day.

E.

Create an S3 Lifecycle configuration to transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 180 days.

Question 18

A company uses an AWS CloudFormation template to deploy an Amazon ECS service into a production environment. The template includes an Amazon S3 bucket that is named by using a common prefix with the CloudFormation stack name.

The company uses the same template to create temporary environments for development and continuous integration. Developers can create environments successfully, but they receive errors from CloudFormation when they attempt to delete the environments. The developers often need to delete and recreate stacks with the same names as part of the development and testing process.

Which combination of steps should a solutions architect take to modify the solution to resolve this issue? (Select TWO.)

Options:

A.

Associate an AWS Lambda function with a CloudFormation custom resource to delete all keys that are present in a given S3 bucket. Implement this custom resource as part of the application's CloudFormation template.

B.

Modify the S3 bucket resource in the CloudFormation template by specifying Delete for the DeletionPolicy attribute. Specify the CAPABILITY_DELETE_NONEMPTY capability to process CloudFormation delete operations.

C.

Modify the S3 bucket resource in the CloudFormation template by specifying Retain for the DeletionPolicy attribute. Configure an AWS Config custom rule to run every 24 hours to identify, empty, and delete buckets that are no longer owned by a CloudFormation stack.

D.

Ensure that CloudFormation operations are being invoked by a role that has s3:DeleteObject permissions on all objects in the bucket.

E.

Modify the S3 bucket resource in the CloudFormation template to configure a bucket policy that grants s3:DeleteObject permissions on all objects in the bucket.

Question 19

A company wants to use AWS for disaster recovery for an on-premises application. The company has hundreds of Windows-based servers that run the application. All the servers mount a common share.

The company has an RTO of 15 minutes and an RPO of 5 minutes. The solution must support native failover and fallback capabilities.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create an AWS Storage Gateway File Gateway. Schedule daily Windows server backups. Save the data lo Amazon S3. During a disaster, recover the on-premises servers from the backup. During failback. run the on-premises servers on Amazon EC2 instances.

B.

Create a set of AWS CloudFormation templates to create infrastructure. Replicate all data to Amazon Elastic File System (Amazon EFS) by using AWS DataSync. During a disaster, use AWS CodePipeline to deploy the templates to restore the on-premises servers. Fail back the data by using DataSync.

C.

Create an AWS Cloud Development Kit (AWS CDK) pipeline to stand up a multi-site active-active environment on AWS. Replicate data into Amazon S3 by using the s3 sync command. During a disaster, swap DNS endpoints to point to AWS. Fail back the data by using the s3 sync command.

D.

Use AWS Elastic Disaster Recovery to replicate the on-premises servers. Replicate data to an Amazon FSx for Windows File Server file system by using AWS DataSync. Mount the file system to AWS servers. During a disaster, fail over the on-premises servers to AWS. Fail back to new or existing servers by using Elastic Disaster Recovery.

Question 20

Question:

A company hosts an ecommerce site using EC2, ALB, and DynamoDB in one AWS Region. The site uses a custom domain in Route 53. The company wants toreplicate the stack to a second Regionfordisaster recoveryandfaster accessfor global customers.

What should the architect do?

Options:

A.

Use CloudFormation to deploy to the second Region. Use Route 53 latency-based routing. Enable global tables in DynamoDB.

B.

Use the console to recreate the infra manually in the second Region. Use weighted routing.

C.

Replicate only the S3 and DynamoDB data. Use Route 53 failover routing.

D.

Use Beanstalk and DynamoDB Streams for replication. Use latency-based routing.

Question 21

A company built an ecommerce website on AWS using a three-tier web architecture. The application is Java-based and composed of an Amazon CloudFront distribution, an Apache web server layer of Amazon EC2 instances in an Auto Scaling group, and a backend Amazon Aurora MySQL database.

Last month, during a promotional sales event, users reported errors and timeouts while adding items to their shopping carts. The operations team recovered the logs created by the web servers and reviewed Aurora DB cluster performance metrics. Some of the web servers were terminated before logs could be collected and the Aurora metrics were not sufficient for query performance analysis.

Which combination of steps must the solutions architect take to improve application performance visibility during peak traffic events? (Choose three.)

Options:

A.

Configure the Aurora MySQL DB cluster to publish slow query and error logs to Amazon CloudWatch Logs.

B.

Implement the AWS X-Ray SDK to trace incoming HTTP requests on the EC2 instances and implement tracing of SQL queries with the X-Ray SDK for Java.

C.

Configure the Aurora MySQL DB cluster to stream slow query and error logs to Amazon Kinesis

D.

Install and configure an Amazon CloudWatch Logs agent on the EC2 instances to send the Apache logs to CloudWatch Logs.

E.

Enable and configure AWS CloudTrail to collect and analyze application activity from Amazon EC2 and Aurora.

F.

Enable Aurora MySQL DB cluster performance benchmarking and publish the stream to AWS X-Ray.

Question 22

A solutions architect wants to cost-optimize and appropriately size Amazon EC2 instances in a single AWS account. The solutions architect wants to ensure that the instances are optimized based on CPU, memory, and network metrics.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

Options:

A.

Purchase AWS Business Support or AWS Enterprise Support for the account.

B.

Turn on AWS Trusted Advisor and review any “Low Utilization Amazon EC2 Instances” recommendations.

C.

Install the Amazon CloudWatch agent and configure memory metric collection on the EC2 instances.

D.

Configure AWS Compute Optimizer in the AWS account to receive findings and optimization recommendations.

E.

Create an EC2 Instance Savings Plan for the AWS Regions, instance families, and operating systems of interest.

Question 23

A media storage application uploads user photos to Amazon S3 for processing by AWS Lambda functions. Application state is stored in Amazon DynamoOB tables. Users are reporting that some uploaded photos are not being processed properly. The application developers trace the logs and find that Lambda is experiencing photo processing issues when thousands of users upload photos simultaneously. The issues are the result of Lambda concurrency limits and the performance of DynamoDB when data is saved.

Which combination of actions should a solutions architect take to increase the performance and reliability of the application? (Select TWO.)

Options:

A.

Evaluate and adjust the RCUs for the DynamoDB tables.

B.

Evaluate and adjust the WCUs for the DynamoDB tables.

C.

Add an Amazon ElastiCache layer to increase the performance of Lambda functions.

D.

Add an Amazon Simple Queue Service (Amazon SQS) queue and reprocessing logic between Amazon S3 and the Lambda functions.

E.

Use S3 Transfer Acceleration to provide lower latency to users.

Question 24

A company wants to send data from its on-premises systems to Amazon S3 buckets. The company created the S3 buckets in three different accounts. The company must send the data privately without the data traveling across the internet The company has no existing dedicated connectivity to AWS

Which combination of steps should a solutions architect take to meet these requirements? (Select TWO.)

Options:

A.

Establish a networking account in the AWS Cloud Create a private VPC in the networking account. Set up an AWS Direct Connect connection with a private VIF between the on-premises environment and the private VPC.

B.

Establish a networking account in the AWS Cloud Create a private VPC in the networking account. Set up an AWS Direct Connect connection with a public VlF between the on-premises environment and the private VPC.

C.

Create an Amazon S3 interface endpoint in the networking account.

D.

Create an Amazon S3 gateway endpoint in the networking account.

E.

Establish a networking account in the AWS Cloud Create a private VPC in the networking account. Peer VPCs from the accounts that host the S3 buckets with the VPC in the network account.

Question 25

A company runs a proprietary stateless ETL application on an Amazon EC2 Linux instance. The application is a Linux binary, and the source code cannot be modified. The application is single-threaded, uses 2 GB of RAM. and is highly CPU intensive The application is scheduled to run every 4 hours and runs for up to 20 minutes A solutions architect wants to revise the architecture for the solution.

Which strategy should the solutions architect use?

Options:

A.

Use AWS Lambda to run the application. Use Amazon CloudWatch Logs to invoke the Lambda function every 4 hours.

B.

Use AWS Batch to run the application. Use an AWS Step Functions state machine to invoke the AWS Batch job every 4 hours.

C.

Use AWS Fargate to run the application. Use Amazon EventBridge (Amazon CloudWatch Events) to invoke the Fargate task every 4 hours.

D.

Use Amazon EC2 Spot Instances to run the application. Use AWS CodeDeploy to deploy and run the application every 4 hours.

Question 26

A company is designing an AWS environment tor a manufacturing application. The application has been successful with customers, and the application's user base has increased. The company has connected the AWS environment to the company's on-premises data center through a 1 Gbps AWS Direct Connect connection. The company has configured BGP for the connection.

The company must update the existing network connectivity solution to ensure that the solution is highly available, fault tolerant, and secure.

Which solution win meet these requirements MOST cost-effectively?

Options:

A.

Add a dynamic private IP AWS Site-to-Site VPN as a secondary path to secure data in transit and provide resilience for the Direct Conned connection. Configure MACsec to encrypt traffic inside the Direct Connect connection.

B.

Provision another Direct Conned connection between the company's on-premises data center and AWS to increase the transfer speed and provide resilience. Configure MACsec to encrypt traffic inside the Dried Conned connection.

C.

Configure multiple private VIFs. Load balance data across the VIFs between the on-premises data center and AWS to provide resilience.

D.

Add a static AWS Site-to-Site VPN as a secondary path to secure data in transit and to provide resilience for the Direct Connect connection.

Question 27

An enterprise company is building an infrastructure services platform for its users. The company has the following requirements:

Provide least privilege access to users when launching AWS infrastructure so users cannot provision unapproved services.

Use a central account to manage the creation of infrastructure services.

Provide the ability to distribute infrastructure services to multiple accounts in AWS Organizations.

Provide the ability to enforce tags on any infrastructure that is started by users.

Which combination of actions using AWS services will meet these requirements? (Choose three.)

Options:

A.

Develop infrastructure services using AWS Cloud Formation templates. Add the templates to acentral Amazon S3 bucket and add the-IAM roles or users that require access to the S3 bucket policy.

B.

Develop infrastructure services using AWS Cloud Formation templates. Upload each template as an AWS Service Catalog product to portfolios created in a central AWS account. Share these portfolios with the Organizations structure created for the company.

C.

Allow user IAM roles to have AWSCloudFormationFullAccess and AmazonS3ReadOnlyAccess permissions. Add an Organizations SCP at the AWS account root user level to deny all services except AWS CloudFormation and Amazon S3.

D.

Allow user IAM roles to have ServiceCatalogEndUserAccess permissions only. Use an automation script to import the central portfolios to local AWS accounts, copy the TagOption assign users access and apply launch constraints.

E.

Use the AWS Service Catalog TagOption Library to maintain a list of tags required by the company. Apply the TagOption to AWS Service Catalog products or portfolios.

F.

Use the AWS CloudFormation Resource Tags property to enforce the application of tags to any CloudFormation templates that will be created for users.

Question 28

A company has introduced a new policy that allows employees to work remotely from their homes if they connect by using a VPN The company Is hosting Internal applications with VPCs in multiple AWS accounts Currently the applications are accessible from the company's on-premises office network through an AWS Site-to-Site VPN connection The VPC in the company's main AWS account has peering connections established with VPCs in other AWS accounts.

A solutions architect must design a scalable AWS Client VPN solution for employees to use while they work from home

What is the MOST cost-effective solution that meets these requirements?

Options:

A.

Create a Client VPN endpoint in each AWS account Configure required routing that allows access to internal applications

B.

Create a Client VPN endpoint in the mam AWS account Configure required routing that allows access to internal applications

C.

Create a Client VPN endpoint in the main AWS account Provision a transit gateway that is connected to each AWS account Configure required routing that allows access to internal applications

D.

Create a Client VPN endpoint in the mam AWS account Establish connectivity between the Client VPN endpoint and the AWS Site-to-Site VPN

Question 29

A company has accounts in an organization in AWS Organizations. The organization has all features enabled. The company stores secrets in AWS Secrets Manager in a central AWS account (Account A). The secrets have resource policies that allow read-only access to 1AM roles in an account outside the organization (Account B). A few privileged users in accounts in the organization have access to the secrets by using 1AM roles.

Because of a security incident, the company needs to revoke all access to the secrets in Account A.

Which solution will meet these requirements?

Options:

A.

Create an SCP to explicitly deny the secretsmanager:GetSecretValue action for all resources. Attach the SCP to Account A.

B.

Modify the resource policies of the secrets in Account A to explicitly deny the secretsmanagenGetSecretValue action to all principals.

C.

Deploy a VPC endpoint for Secrets Manager in Account A. Update the VPC endpoint policy to explicitly deny the secretsmanagenGetSecretValue action to all principals.

D.

Modify the 1AM role inline policies in Account B to explicitly deny the secretsmanager:GetSecretValue action for all secrets in Account A.

Question 30

A company has millions of objects in an Amazon S3 bucket. The objects are in the S3 Standard storage class. All the S3 objects are accessed frequently. The number of users and applications that access the objects is increasing rapidly. The objects are encrypted with server-side encryption with AWS KMS Keys (SSE-KMS).

A solutions architect reviews the company's monthly AWS invoice and notices that AWS KMS costs are increasing because of the high number of requests from Amazon S3. The solutions architect needs to optimize costs with minimal changes to the application.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new S3 bucket that has server-side encryption with customer-provided keys (SSE-C) as the encryption type. Copy the existing objects to the new S3 bucket. Specify SSE-C.

B.

Create a new S3 bucket that has server-side encryption with Amazon S3 managed keys (SSE-S3) as the encryption type. Use S3 Batch Operations to copy the existing objects to the new S3 bucket. Specify SSE-S3.

C.

Use AWS CloudHSM to store the encryption keys. Create a new S3 bucket. Use S3 Batch Operations to copy the existing objects to the new S3 bucket. Encrypt the objects by using the keys from CloudHSM.

D.

Use the S3 Intelligent-Tiering storage class for the S3 bucket. Create an S3 Intelligent-Tiering archive configuration to transition objects that are not accessed for 90 days to S3 Glacier Deep Archive.

Question 31

A company is running a critical application that uses an Amazon RDS for MySQL database to store data. The RDS DB instance is deployed in Multi-AZ mode.

A recent RDS database failover test caused a 40-second outage to the application A solutions architect needs to design a solution to reduce the outage time to less than 20 seconds.

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE.)

Options:

A.

Use Amazon ElastiCache for Memcached in front of the database

B.

Use Amazon ElastiCache for Redis in front of the database.

C.

Use RDS Proxy in front of the database

D.

Migrate the database to Amazon Aurora MySQL

E.

Create an Amazon Aurora Replica

F.

Create an RDS for MySQL read replica

Question 32

A company uses AWS Organizations to manage more than 1.000 AWS accounts. The company has created a new developer organization. There are 540 developer member accounts that must be moved to the new developer organization. All accounts are set up with all the required Information so that each account can be operated as a standalone account.

Which combination of steps should a solutions architect take to move all of the developer accounts to the new developer organization? (Select THREE.)

Options:

A.

Call the MoveAccount operation in the Organizations API from the old organization's management account to migrate the developer accounts to the new developer organization.

B.

From the management account, remove each developer account from the old organization using the RemoveAccountFromOrganization operation in the Organizations API.

C.

From each developer account, remove the account from the old organization using the RemoveAccountFromOrganization operation in the Organizations API.

D.

Sign in to the new developer organization's management account and create a placeholder member account that acts as a target for the developer account migration.

E.

Call the InviteAccountToOrganization operation in the Organizations API from the new developer organization's management account to send invitations to the developer accounts.

F.

Have each developer sign in to their account and confirm to join the new developer organization.

Question 33

A solutions architect is investigating an issue in which a company cannot establish new sessions in Amazon Workspaces. An initial analysis indicates that the issue involves user profiles. The AmazonWorkspaces environment is configured to use Amazon FSx for Windows File Server as the profile share storage. The FSx for Windows File Server file system is configured with 10 TB of storage.

The solutions architect discovers that the file system has reached its maximum capacity. The solutions architect must ensure that users can regain access. The solution also must prevent the problem from occurring again.

Which solution will meet these requirements?

Options:

A.

Remove old user profiles to create space. Migrate the user profiles to an Amazon FSx for Lustre file system.

B.

Increase capacity by using the update-file-system command. Implement an Amazon CloudWatch metric that monitors free space. Use Amazon EventBridge to invoke an AWS Lambda function to increase capacity as required.

C.

Monitor the file system by using the FreeStorageCapacity metric in Amazon CloudWatch. Use AWS Step Functions to increase the capacity as required.

D.

Remove old user profiles to create space. Create an additional FSx for Windows File Server file system. Update the user profile redirection for 50% of the users to use the new file system.

Question 34

Question:

A company mandates that all internal AWS communications useprivate IPs. A solutions architect createdinterface VPC endpointsfor public AWS services like S3. However, service names are still resolving topublic IP addresses, and the internal apps cannot connect.

What should the architect do to resolve this issue?

Options:

A.

Update the subnet route table with a route to the interface endpoint.

B.

Enable the private DNS option on the VPC attributes.

C.

Configure the security group on the interface endpoint to allow access.

D.

Configure a private hosted zone with conditional forwarding.

Question 35

A company's interactive web application uses an Amazon CloudFront distribution to serve images from an Amazon S3 bucket. Occasionally, third-party tools ingest corrupted images into the S3 bucket. This image corruption causes a poor user experience in the application later. The company has successfully implemented and tested Python logic to detect corrupt images.

A solutions architect must recommend a solution to integrate the detection logic with minimal latency between the ingestion and serving.

Which solution will meet these requirements?

Options:

A.

Use a Lambda@Edge function that is invoked by a viewer-response event.

B.

Use a Lambda@Edge function that is invoked by an origin-response event.

C.

Use an S3 event notification that invokes an AWS Lambda function.

D.

Use an S3 event notification that invokes an AWS Step Functions state machine.

Question 36

A company completed a successful Amazon Workspaces proof of concept. They now want to make Workspaceshighly available across two AWS Regions. Workspaces are deployed in the failover Region. A hosted zone is available in Amazon Route 53.

What should the solutions architect do?

Options:

A.

Create a connection alias in the primary Region and in the failover Region. Associate each with a directory in its Region. Create a Route 53 failover routing policy with Evaluate Target Health = Yes.

B.

Create a connection alias in both Regions. Associate both with a directory in the primary Region. Use a Route 53 multivalue answer routing policy.

C.

Create a connection alias in the primary Region. Associate with the directory in the primary Region. Use Route 53 weighted routing.

D.

Create a connection alias in the primary Region. Associate it with the directory in the failover Region. Use Route 53 failover routing with Evaluate Target Health = Yes.

Question 37

A team of data scientists is using Amazon SageMaker instances and SageMaker APIs to train machine learning (ML) models. The SageMaker instances are deployed in a

VPC that does not have access to or from the internet. Datasets for ML model training are stored in an Amazon S3 bucket. Interface VPC endpoints provide access to Amazon S3 and the SageMaker APIs.

Occasionally, the data scientists require access to the Python Package Index (PyPl) repository to update Python packages that they use as part of their workflow. A solutions architect must provide access to the PyPI repository while ensuring that the SageMaker instances remain isolated from the internet.

Which solution will meet these requirements?

Options:

A.

Create an AWS CodeCommit repository for each package that the data scientists need to access. Configure code synchronization between the PyPl repositoryand the CodeCommit repository. Create a VPC endpoint for CodeCommit.

B.

Create a NAT gateway in the VPC. Configure VPC routes to allow access to the internet with a network ACL that allows access to only the PyPl repositoryendpoint.

C.

Create a NAT instance in the VPC. Configure VPC routes to allow access to the internet. Configure SageMaker notebook instance firewall rules that allow access to only the PyPI repository endpoint.

D.

Create an AWS CodeArtifact domain and repository. Add an external connection for public:pypi to the CodeArtifact repository. Configure the Python client touse the CodeArtifact repository. Create a VPC endpoint for CodeArtifact.

Question 38

Question:

A company is modernizing a legacy.NET Frameworkapplication backed by SQL Server. Requirements:

Containerize into microservices.

Control OS patches and storage.

Add load balancing.

Ensure high availability.Which solution meets all of these with minimal refactoring?

Options:

A.

Use App2Container to deploy on ECS EC2 with ALB and RDS for SQL Server.

B.

Use App2Container on ECS EC2 with NLB and Aurora MySQL.

C.

Use Porting Assistant and EKS with Fargate and Aurora MySQL.

D.

Use Porting Assistant and EKS with Fargate and RDS SQL Server.

Question 39

A company wants to run a custom network analysis software package to inspect traffic as traffic leaves and enters a VPC. The company has deployed the solution by using AWS Cloud Formation on three Amazon EC2 instances in an Auto Scaling group. All network routing has been established to direct traffic to the EC2 instances.

Whenever the analysis software stops working, the Auto Scaling group replaces an instance. The network routes are not updated when the instance replacement occurs.

Which combination of steps will resolve this issue? {Select THREE.)

Options:

A.

Create alarms based on EC2 status check metrics that will cause the Auto Scaling group to replace the failed instance.

B.

Update the Cloud Formation template to install the Amazon CloudWatch agent on the EC2 instances. Configure the CloudWatch agent to send process metrics for the application.

C.

Update the Cloud Formation template to install AWS Systems Manager Agent on the EC2 instances. Configure Systems Manager Agent to send process metrics for the application.

D.

Create an alarm for the custom metric in Amazon CloudWatch for the failure scenarios. Configure the alarm to publish a message to an Amazon Simple Notification Service {Amazon SNS) topic.

E.

Create an AWS Lambda function that responds to the Amazon Simple Notification Service (Amazon SNS) message to take the instance out of service. Update the network routes to point to the replacement instance.

F.

In the Cloud Formation template, write a condition that updates the network routes when a replacement instance is launched.

Question 40

A company is planning to migrate its applications from an on-premises data center to AWS. The on-premises data center has an AWS Direct Connect connection. The company needs to test IPv6 connectivity in the VPC so that the applications can communicate with more customers worldwide.

A solutions architect has created a VPC with an IPv6 CIDR block.

Which networking configurations will meet these requirements? (Select TWO.)

Options:

A.

Launch an Amazon EC2 instance into a public subnet. Associate an IPv6 address with the instance during launch. Configure a security group, a network ACL, and route tables for IPv6 communication. Associate a virtual private gateway in the VPC with a Direct Connect gateway.

B.

Launch an Amazon EC2 instance into a private subnet. Associate an IPv6 address with the instance during launch. Configure a security group, a network ACL, and route tables for IPv6 communication. Create a route that directs all IPv6 traffic from the private subnet to a NAT gateway.

C.

Launch an Amazon EC2 instance into a public subnet. Associate an IPv6 address with the instance during launch. Configure a security group, a network ACL, and route tables for IPv6 communication. Create a route that directs all IPv6 traffic from the public subnet to an internet gateway.

D.

Launch an Amazon EC2 instance into a private subnet. Associate an IPv6 address with the instance during launch. Configure a security group, a network ACL, and route tables for IPv6 communication. Create a route that directs all IPv6 traffic from the private subnet to a NAT instance.

E.

Launch an Amazon EC2 instance into a private subnet. Associate an IPv6 address with the instance during launch. Configure a security group, a network ACL, and route tables for IPv6 communication. Create a route that directs all IPv6 traffic from the private subnet to an egress-only internet gateway.

Question 41

A company is running an application in the AWS Cloud. The application uses AWS Lambda functions and Amazon Elastic Container Service (Amazon ECS) containers that run with AWS Fargate technology as its primary compute. The load on the application is irregular. The application experiences long periods of no usage, followed by sudden and significant increases and decreases in traffic. The application is write-heavy and stores data in an Amazon Aurora MySQL database. The database runs on an Amazon RDS memory optimized DB instance that is not able to handle the load.

What is the MOST cost-effective way for the company to handle the sudden and significant changes in traffic?

Options:

A.

Add additional read replicas to the database. Purchase Instance Savings Plans and RDS Reserved Instances.

B.

Migrate the database to an Aurora multi-master DB cluster. Purchase Instance Savings Plans.

C.

Migrate the database to an Aurora global database. Purchase Compute Savings Plans and RDS Reserved Instances.

D.

Migrate the database to Aurora Serverless v1. Purchase Compute Savings Plans.

Question 42

A company runs a software-as-a-service

Which solution meets these requirements'?

Options:

A.

Create an Amazon CloudWatch alarm action that triggers a Lambda function to add an Amazon RDS for MySQL read replica when resource utilization hits a threshold

B.

Migrate the database to Amazon Aurora, and add a read replica Add a database connection pool outside of the Lambda handler function

C.

Migrate the database to Amazon Aurora and add a read replica Use Amazon Route 53 weighted records

D.

Migrate the database to Amazon Aurora and add an Aurora Replica Configure Amazon RDS Proxy to manage database connection pools

Question 43

A company is developing a solution to analyze images. The solution uses a 50 TB reference dataset and analyzes images up to 1 TB in size. The solution spreads requests across an Auto Scaling group of Amazon EC2 Linux instances in a VPC. The EC2 instances are attached to shared Amazon EBS io2 volumes in each Availability Zone. The EBS volumes store the reference dataset.

During testing, multiple parallel analyses led to numerous disk errors, which caused job failures. The company wants the solution to provide seamless data reading for all instances.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a new EBS volume for each EC2 instance. Copy the data from the shared volume to the new EBS volume regularly. Update the application to reference the new EBS volume.

B.

Move all the reference data to an Amazon S3 bucket. Install Mountpoint for Amazon S3 on the EC2 instances. Create gateway endpoints for Amazon S3 in the VPC. Replace the EBS mount point with the S3 mount point.

C.

Move all the reference data to an Amazon S3 bucket. Create an Amazon S3 backed Multi-AZ Amazon EFS volume. Mount the EFS volume on the EC2 instances. Replace the EBS mount point with the EFS mount point.

D.

Upgrade the instances to local storage. Copy the data from the shared EBS volume to the local storage regularly. Update the application to reference the local storage.

Question 44

A company is using AWS Organizations with a multi-account architecture. The company's current security configuration for the account architecture includes SCPs, resource-based policies, identity-based policies, trust policies, and session policies.

A solutions architect needs to allow an IAM user in Account A to assume a role in Account B.

Which combination of steps must the solutions architect take to meet this requirement? (Select THREE.)

Options:

A.

Configure the SCP for Account A to allow the action.

B.

Configure the resource-based policies to allow the action.

C.

Configure the identity-based policy on the user in Account A to allow the action.

D.

Configure the identity-based policy on the user in Account B to allow the action.

E.

Configure the trust policy on the target role in Account B to allow the action.

F.

Configure the session policy to allow the action and to be passed programmatically by the GetSessionToken API operation.

Question 45

Question:

A company is replicating an application in asecondary Region. The application usesDynamoDBandRDS for MySQL. The secondary Region must function independently during adisaster.

Options:

A.

Use DynamoDB global tables and an RDS read replica.

B.

Use DAX and a read replica.

C.

Use global tables and RDS Multi-AZ with standby in secondary Region.

D.

Use Streams and Lambda to copy data. Use read replica.

Question 46

A company is building an application that will run on an AWS Lambda function. Hundreds of customers will use the application. The company wants to give each customer a quota of requests for a specific time period. The quotas must match customer usage patterns. Some customers must receive a higher quota for a shorter time period.

Which solution will meet these requirements?

Options:

A.

Create an Amazon API Gateway REST API with a proxy integration to invoke the Lambda function. For each customer, configure an API Gateway usage plan that includes an appropriate request quota. Create an API key from the usage plan for each user that the customer needs.

B.

Create an Amazon API Gateway HTTP API with a proxy integration to invoke the Lambda function. For each customer, configure an API Gateway usage plan that includes an appropriate request quota. Configure route-level throttling for each usage plan. Create an API key from the usage plan for each user that the customer needs.

C.

Create a Lambda function alias for each customer. Include a concurrency limit with an appropriate request quota. Create a Lambda function URL for each function alias. Share the Lambda function URL for each alias with therelevant customer.

D.

Create an Application Load Balancer (ALB) in a VPC. Configure the Lambda function as a target for the ALB. Configure an AWS WAF web ACL for the ALB. For each customer, configure a rate-based rule that includes an appropriate request quota.

Question 47

A solutions architect has implemented a SAML 2 0 federated identity solution with their company's on-premises identity provider (IdP) to authenticate users' access to the AWS environment. When the solutions architect tests authentication through the federated identity web portal, access to the AWS environment is granted However when test users attempt to authenticate through the federated identity web portal, they are not able to access the AWS environment

Which items should the solutions architect check to ensure identity federation isproperly configured? (Select THREE)

Options:

A.

The 1AM user's permissions policy has allowed the use of SAML federation for that user

B.

The 1AM roles created for the federated users' or federated groups' trust policy have set the SAML provider as the principal

C.

Test users are not in the AWSFederatedUsers group in the company's IdP

D.

The web portal calls the AWS STS AssumeRoleWithSAML API with the ARN of the SAML provider, the ARN of the 1AM role, and the SAML assertion from IdP

E.

The on-premises IdP's DNS hostname is reachable from the AWS environment VPCs

F.

The company's IdP defines SAML assertions that properly map users or groups in the company to 1AM roles with appropriate permissions

Question 48

A company operates an on-premises software-as-a-service (SaaS) solution that ingests several files daily. The company provides multiple public SFTP endpoints to its customers to facilitate the file transfers. The customers add the SFTP endpoint IP addresses to their firewall allow list for outbound traffic. Changes to the SFTP endmost IP addresses are not permitted.

The company wants to migrate the SaaS solution to AWS and decrease the operational overhead of the file transfer service.

Which solution meets these requirements?

Options:

A.

Register the customer-owned block of IP addresses in the company's AWS account. Create Elastic IP addresses from the address pool and assign them to an AWS Transfer for SFTP endpoint. Use AWS Transfer to store the files in Amazon S3.

B.

Add a subnet containing the customer-owned block of IP addresses to a VPC Create Elastic IP addresses from the address pool and assign them to an Application Load Balancer (ALB). Launch EC2 instances hosting FTP services in an Auto Scaling group behind the ALB. Store the files in attached Amazon Elastic Block Store (Amazon EBS) volumes.

C.

Register the customer-owned block of IP addresses with Amazon Route 53. Create alias records in Route 53 that point to a Network Load Balancer (NLB). Launch EC2 instances hosting FTP services in an Auto Scaling group behind the NLB. Store the files in Amazon S3.

D.

Register the customer-owned block of IP addresses in the company's AWS account. Create Elastic IP addresses from the address pool and assign them to an Amazon S3 VPC endpoint. Enable SFTP support on the S3 bucket.

Question 49

A company has many services running in its on-premises data center. The data center is connected to AWS using AWS Direct Connect (DX)and an IPsec VPN. The service data is sensitive and connectivity cannot traverse the interne. The company wants to expand to a new market segment and begin offering Is services to other companies that are using AWS.

Which solution will meet these requirements?

Options:

A.

Create a VPC Endpoint Service that accepts TCP traffic, host it behind a Network Load Balancer, and make the service available over DX.

B.

Create a VPC Endpoint Service that accepts HTTP or HTTPS traffic, host it behind an Application Load Balancer, and make the service available over DX.

C.

Attach an internet gateway to the VPC. and ensure that network access control and security group rules allow the relevant inbound and outbound traffic.

D.

Attach a NAT gateway to the VPC. and ensue that network access control and security group rules allow the relevant inbound and outbound traffic.

Question 50

A company runs a content management application on a single Windows Amazon EC2 instance in a development environment. The application reads and writes static content to a 2 TB Amazon Elastic Block Store (Amazon EBS) volume that is attached to the instance as the root device. The company plans to deploy this application in production as a highly available and fault-tolerant solution that runs on at least three EC2 instances across multiple Availability Zones.

A solutions architect must design a solution that joins all the instances that run the application to an Active Directory domain. The solution also must implement Windows ACLs to control access to file contents. The application always must maintain exactly the same content on all running instances at any given point in time.

Which solution will meet these requirements with the LEAST management overhead?

Options:

A.

Create an Amazon Elastic File System (Amazon EFS) file share. Create an Auto Scaling group that extends across three Availability Zones and maintains a minimum size of three instances. Implement a user data script to install the application, join the instance to the AD domain, and mount the EFS file share.

B.

Create a new AMI from the current EC2 instance that is running. Create an Amazon FSx for Lustre file system. Create an Auto Scaling group that extends across three Availability Zones and maintains a minimum size of three instances. Implement a user data script to join the instance to the AD domain and mount the FSx for Lustre file system.

C.

Create an Amazon FSx for Windows File Server file system. Create an Auto Scaling group that extends across three Availability Zones and maintains a minimum size of three instances. Implement a user data script to install the application and mount the FSx for Windows File Server file system. Perform a seamless domain join to join the instance to the AD domain.

D.

Create a new AMI from the current EC2 instance that is running. Create an Amazon Elastic File System (Amazon EFS) file system. Create an Auto Scaling group that extends across three Availability Zones and maintains a minimum size of three instances. Perform a seamless domain join to join the instance to the AD domain.

Question 51

A company has on-premises Linux, Windows, and Ubuntu servers that run many applications. The servers run on physical machines and VMs. The company plans to migrate the servers to Amazon EC2 instances.

The company needs to accomplish the following goals:

• Measure actual server usage, system performance, and running processes.

• List system configurations.

• Understand details of the network connections between systems.

• Analyze application components and dependencies within on-premises workloads.

• Receive EC2 instance sizing recommendations from AWS.

Which solution will meet these requirements?

Options:

A.

Install AWS Systems Manager Agent (SSM Agent) on the physical machines and VMs to gather performance and usage information from servers. Use Systems Manager Application Manager to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Pricing Calculator.

B.

Install the Amazon Inspector agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Compute Optimizer.

C.

Install the AWS Application Discovery Agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using Migration Hub.

D.

Install the unified Amazon CloudWatch agent on the physical machines and VMs to gather performance and usage information from servers. Use AWS Migration Hub to discover existing servers and to group servers into applications before the migration. Generate EC2 instance recommendations by using AWS Compute Optimizer.

Question 52

A company has used infrastructure as code (IaC) to provision a set of two Amazon EC2 instances. The instances have remained the same for several years.

The company's business has grown rapidly in the past few months. In response the company's operations team has implemented an Auto Scaling group to manage the sudden increases in traffic. Company policy requires a monthly installation of security updates on all operating systems that are running.

The most recent security update required a reboot. As a result, the Auto Scaling group terminated the instances and replaced them with new, unpatched instances.

Which combination of steps should a solutions architect recommend to avoid a recurrence of this issue? (Choose two.)

Options:

A.

Modify the Auto Scaling group by setting the Update policy to target the oldest launch configuration for replacement.

B.

Create a new Auto Scaling group before the next patch maintenance. During the maintenance window, patch both groups and reboot the instances.

C.

Create an Elastic Load Balancer in front of the Auto Scaling group. Configure monitoring to ensure that target group health checks return healthy after the Auto Scaling group replaces the terminated instances.

D.

Create automation scripts to patch an AMI, update the launch configuration, and invoke an Auto Scaling instance refresh.

E.

Create an Elastic Load Balancer in front of the Auto Scaling group. Configure termination protection on the instances.

Question 53

A company is using an on-premises Active Directory service for user authentication. The company wants to use the same authentication service to sign in to the company's AWS accounts, which are using AWS Organizations. AWS Site-to-Site VPN connectivity already exists between the on-premises environment and all the company's AWS accounts.

The company's security policy requires conditional access to the accounts based on user groups and roles. User identities must be managed in a single location.

Which solution will meet these requirements?

Options:

A.

Configure AWS Single Sign-On (AWS SSO) to connect to Active Directory by using SAML 2.0. Enable automatic provisioning by using the System for Cross- domain Identity Management (SCIM) v2.0 protocol. Grant access to the AWS accounts by using attribute-based access controls (ABACs).

B.

Configure AWS Single Sign-On (AWS SSO) by using AWS SSO as an identity source. Enable automatic provisioning by using the System for Cross-domain Identity Management (SCIM) v2.0 protocol. Grant access to the AWS accounts by using AWS SSO permission sets.

C.

In one of the company's AWS accounts, configure AWS Identity and Access Management (IAM) to use a SAML 2.0 identity provider. Provision IAM users that are mapped to the federated users. Grant access that corresponds to appropriate groups in Active Directory. Grant access to the required AWS accounts by using cross-account IAM users.

D.

In one of the company's AWS accounts, configure AWS Identity and Access Management (IAM) to use an OpenID Connect (OIDC) identity provider. Provision IAM roles that grant access to the AWS account for the federated users that correspond to appropriate groups in Active Directory. Grant access to the required AWS accounts by using cross-account IAM roles.

Question 54

A company stores data on an Amazon RDS for PostgreSQL DB instance in a private subnet in an AWS database account. Applications that are deployed in different VPCs access this data from different AWS accounts.

The company needs to manage the number of active connections to the DB instance. Communication between all accounts and the database account must be private and must not travel across the internet. The solution must be scalable to accommodate more consumer accounts in the future.

Which solution will meet these requirements?

Options:

A.

Connect all the VPCs in all the accounts by using a transit gateway. Configure a NAT gateway in a public subnet. Route traffic from the NAT gateway through the transit gateway to the DB instance.

B.

Create an RDS proxy in the AWS database account. Create a proxy endpoint in the private subnet. Configure AWS PrivateLink with a Network Load Balancer to provide access to the DB instance.

C.

Create a VPC peering connection between the VPC that contains the DB instance and each VPC from the other accounts. Configure an Application Load Balancer to provide access to the DB instance through the peering connection.

D.

Create a VPC peering connection between the VPC that contains the DB instance and each VPC from the other accounts. Configure a NAT gateway in a public subnet to route traffic to the DB instance.

Question 55

Question:

An application uses CloudFront, App Runner, and two S3 buckets — one for static assets and one for user-uploaded content. User content is infrequently accessed after 30 days. Users are located only in Europe.

How can the companyoptimize cost?

Options:

A.

Expire S3 objects after 30 days.

B.

Transition S3 content toGlacier Deep Archiveafter 30 days.

C.

Use Spot Instances with App Runner.

D.

Add auto scaling to Aurora read replica.

E.

UseCloudFront Price Class 200(Europe & U.S. only).

Question 56

An e-commerce company is revamping its IT infrastructure and is planning to use AWS services. The company's CIO has asked a solutions architect to design a simple, highly available, and loosely coupled order processing application. The application is responsible for receiving and processing orders before storing them in an Amazon DynamoDB table. The application has a sporadic traffic pattern and should be able to scale during marketing campaigns to process the orders with minimal delays.

Which of the following is the MOST reliable approach to meet the requirements?

Options:

A.

Receive the orders in an Amazon EC2-hosted database and use EC2 instances to process them.

B.

Receive the orders in an Amazon SQS queue and invoke an AWS Lambda function to processthem.

C.

Receive the orders using the AWS Step Functions program and launch an Amazon ECS container to process them.

D.

Receive the orders in Amazon Kinesis Data Streams and use Amazon EC2 instances to process them.

Question 57

A company is deploying a new cluster for big data analytics on AWS. The cluster will run across many Linux Amazon EC2 instances that are spread across multiple Availability Zones.

All of the nodes in the cluster must have read and write access to common underlying file storage. The file storage must be highly available, must be resilient, must be compatible with the Portable Operating System Interface (POSIX). and must accommodate high levels of throughput.

Which storage solution will meet these requirements?

Options:

A.

Provision an AWS Storage Gateway file gateway NFS file share that is attached to an Amazon S3 bucket. Mount the NFS file share on each EC2 instance in the duster.

B.

Provision a new Amazon Elastic File System (Amazon EFS) file system that uses General Purpose performance mode. Mount the EFS file system on each EC2 instance in the cluster.

C.

Provision a new Amazon Elastic Block Store (Amazon EBS) volume that uses the io2 volume type. Attach the EBS volume to all of the EC2 instances in the cluster.

D.

Provision a new Amazon Elastic File System (Amazon EFS) file system that uses Max I/O performance mode. Mount the EFS file system on each EC2 instance in the cluster.

Question 58

A company operates a proxy server on a fleet of Amazon EC2 instances. Partners in different countries use the proxy server to test the company's functionality. The EC2 instances are running in a VPC. and the instances have access to the internet.

The company's security policy requires that partners can access resources only from domains that the company owns.

Which solution will meet these requirements?

Options:

A.

Create an Amazon Route 53 Resolver DNS Firewall domain list that contains the allowed domains. Configure a DNS Firewall rule group with a rule that has a high numeric value that blocks all requests. Configure a rule that has a low numeric value that allows requests for domains in the allowed list. Associate the rule group with the VPC.

B.

Create an Amazon Route 53 Resolver DNS Firewall domain list that contains the allowed domains. Configure a Route 53 outbound endpoint. Associate the outbound endpoint with the VPC. Associate the domain list with the outbound endpoint.

C.

Create an Amazon Route 53 traffic flow policy to match the allowed domains. Configure the traffic flow policy to forward requests that match to the Route 53 Resolver. Associate the traffic flow policy with the VPC.

D.

Create an Amazon Route 53 outbound endpoint. Associate the outbound endpoint with the VPC. Configure a Route 53 traffic flow policy to forward requests for allowed domains to the outbound endpoint. Associate the traffic flow policy with the VPC.

Question 59

A company has deployed applications to thousands of Amazon EC2 instances in an AWS account. A security audit discovers that several unencrypted Amazon EBS volumes are attached to the EC2 instances. The company's security policy requires the EBS volumes to be encrypted.

The company needs to implement an automated solution to encrypt the EBS volumes. The solution also must prevent development teams from creating unencrypted EBS volumes.

Which solution will meet these requirements?

Options:

A.

Configure the AWS Config managed rule that identifies unencrypted EBS volumes. Configure an automatic remediation action. Associate an AWS Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Create an AWS KMS customer managed key. In the key policy, include a statement to deny the creation of unencrypted EBS volumes.

B.

Use AWS Systems Manager Fleet Manager to create a list of unencrypted EBS volumes. Create a Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Create an SCP to deny the creation of unencrypted EBS volumes.

C.

Use AWS Systems Manager Fleet Manager to create a list of unencrypted EBS volumes. Create a Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Modify the AWS account setting for EBS encryption to always encrypt new EBS volumes.

D.

Configure the AWS Config managed rule that identifies unencrypted EBS volumes. Configure an automatic remediation action. Associate an AWS Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Modify the AWS account setting for EBS encryption to always encrypt new EBS volumes.

Question 60

A financial services company sells its software-as-a-service (SaaS) platform for application compliance to large global banks. The SaaS platform runs on AWS and uses multiple AWS accounts that are managed in an organization in AWS Organizations. The SaaS platform uses many AWS resources globally.

For regulatory compliance, all API calls to AWS resources must be audited, tracked for changes, and stored in a durable and secure data store.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new AWS CloudTrail trail. Use an existing Amazon S3 bucket in the organization's management account to store the logs. Deploy the trail to all AWS Regions. Enable MFA delete and encryption on the S3 bucket.

B.

Create a new AWS CloudTrail trail in each member account of the organization. Create new Amazon S3 buckets to store the logs. Deploy the trail to all AWS Regions. Enable MFA delete and encryption on the S3 buckets.

C.

Create a new AWS CloudTrail trail in the organization's management account. Create a new Amazon S3 bucket with versioning turned on to store the logs. Deploy the trail for all accounts in the organization. Enable MFA delete and encryption on the S3 bucket.

D.

Create a new AWS CloudTrail trail in the organization's management account. Create a new Amazon S3 bucket to store the logs. Configure Amazon Simple Notification Service (Amazon SNS) to send log-file delivery notifications to an external management system that will track the logs. Enable MFA delete and encryption on the S3 bucket.

Question 61

A company operates a fleet of servers on premises and operates a fleet of Amazon EC2 instances in its organization in AWS Organizations. The company's AWS accounts contain hundreds of VPCs. The company wants to connect its AWS accounts to its on-premises network. AWS Site-to-Site VPN connections are already established to a single AWS account. The company wants to control which VPCs can communicate with other VPCs.

Which combination of steps will achieve this level of control with the LEAST operational effort? (Choose three.)

Options:

A.

Create a transit gateway in an AWS account. Share the transit gateway across accounts by using AWS Resource Access Manager (AWS RAM).

B.

Configure attachments to all VPCs and VPNs.

C.

Set up transit gateway route tables. Associate the VPCs and VPNs with the route tables.

D.

Configure VPC peering between the VPCs.

E.

Configure attachments between the VPCs and VPNs.

F.

Set up route tables on the VPCs and VPNs.

Question 62

A company has a web application that allows users to upload short videos. The videos are stored on Amazon EBS volumes and analyzed by custom recognition software for categorization.

The website contains stat c content that has variable traffic with peaks in certain months. The architecture consists of Amazon EC2 instances running in an Auto Scaling group for the web application and EC2 instances running in an Auto Scaling group to process an Amazon SQS queue The company wants to re-architect the application to reduce operational overhead using AWS managed services where possible and remove dependencies on third-party software.

Which solution meets these requirements?

Options:

A.

Use Amazon ECS containers for the web application and Spot Instances for the Auto Scaling group that processes the SQS queue. Replace the custom software with Amazon Recognition to categorize the videos.

B.

Store the uploaded videos n Amazon EFS and mount the file system to the EC2 instances for Te web application. Process the SOS queue with an AWS Lambda function that calls the Amazon Rekognition API to categorize the videos.

C.

Host the web application in Amazon S3. Store the uploaded videos in Amazon S3. Use S3 event notifications to publish events to the SQS queue Process the SQS queue with an AWS Lambda function that calls the Amazon Rekognition API to categorize the videos.

D.

Use AWS Elastic Beanstalk to launch EC2 instances in an Auto Scaling group for the web application and launch a worker environment to process the SQS queue Replace the custom software with Amazon Rekognition to categorize the videos.

Question 63

A company has more than 10.000 sensors that send data to an on-premises Apache Kafka server by using the Message Queuing Telemetry Transport (MQTT) protocol. The on-premises Kafka server transforms the data and then stores the results as objects in an Amazon S3 bucket.

Recently, the Kafka server crashed. The company lost sensor data while the server was being restored. A solutions architect must create a new design on AWS that is highly available and scalable to prevent a similar occurrence.

Which solution will meet these requirements?

Options:

A.

Launch two Amazon EC2 instances to host the Kafka server in an active/standby configuration across two Availability Zones. Create a domain name in Amazon Route 53. Create a Route 53 failover policy. Route the sensors to send the data to the domain name.

B.

Migrate the on-premises Kafka server to Amazon Managed Streaming for Apache Kafka (Amazon MSK). Create a Network Load Balancer (NLB) that points to the Amazon MSK broker Enable NL8 health checks. Route the sensors to send the data to the NLB.

C.

Deploy AWS loT Core, and connect it to an Amazon Kinesis Data Firehose delivery stream. Use an AWS Lambda function to handle data transformation. Route the sensors to send the data to AWS loT Core.

D.

Deploy AWS loT Core, and launch an Amazon EC2 instance to host the Kafka server. Configure AWS loT Core to send the data to the EC2 instance. Route the sensors to send the data to AWS loT Core.

Question 64

A company needs to create and manage multiple AWS accounts for a number of departments from a central location. The security team requires read-only access to all accounts from its own AWS account. The company is using AWS Organizations and created an account for the security team.

How should a solutions architect meet these requirements?

Options:

A.

Use the OrganizationAccountAccessRole IAM role to create a new IAM policy with read-only access in each member account. Establish a trust relationship between the IAM policy in each member account and the security account. Ask the security team to use the IAM policy to gain access.

B.

Use the Organization AccountAccessRole IAM role to create a new IAM role with read-only access in each member account. Establish a trust relationship between the IAM role in each member account and the security account. Ask the security team to use the IAM role to gain access.

C.

Ask the security team to use AWS Security Token Service (AWS STS) lo call the AssumeRole API tor the Organization AccountAccessRole IAM role in the management account from the security account. Use the generated temporary credentials to gain access.

D.

Ask the security team to use AWS Security Token Service (AWS STS) to call the AssumeRole API for the Organization AccountAccessRole IAM role in the member account from the security account. Use the generated temporary credentials to gain access.

Question 65

Question:

A company is running a large containerized workload in the AWS Cloud using Amazon ECS. The development team recently started usingAWS Fargateinstead of EC2 in the ECS cluster. The company is worried about reaching themaximum number of ECS tasksallowed in the account.

A solutions architect must implement a solution that notifies the development team when Fargate usage reaches80% of the quota.

What should the architect do?

Options:

A.

Use CloudWatch to monitor the Sample Count for each service. Alert when usage exceeds 80%.

B.

Use CloudWatch to monitor ECS service quotas under the AWS/Usage namespace. Create an alarm when utilization exceeds 80%. Notify via SNS.

C.

Use a Lambda function to poll Fargate metrics. Notify via SES when usage exceeds 80%.

D.

Use AWS Config to monitor Fargate quotas. Notify via SES if non-compliant.

Question 66

A company is refactoring its on-premises order-processing platform in the AWS Cloud. The platform includes a web front end that is hosted on a fleet of VMs RabbitMQ to connect the front end to the backend, and a Kubernetes cluster to run a containerized backend system to process the orders. The company does not want to make any major changes to the application

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up Amazon MQ to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

B.

Create a custom AWS Lambda runtime to mimic the web server environment Create an Amazon API Gateway API to replace the front-end web servers Set up Amazon MQ to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

C.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up Amazon MQ to replace the on-premises messaging queue Install Kubernetes on a fleet of different EC2 instances to host the order-processing backend

D.

Create an AMI of the web server VM Create an Amazon EC2 Auto Scaling group that uses the AMI and an Application Load Balancer Set up an Amazon Simple Queue Service (Amazon SQS) queue to replace the on-premises messaging queue Configure Amazon Elastic Kubernetes Service (Amazon EKS) to host the order-processing backend

Question 67

A company's solutions architect is reviewing a new internally developed application in a sandbox AWS account The application uses an AWS Auto Scaling group of Amazon EC2 instances that have an IAM instance profile attached Part of the application logic creates and accesses secrets from AWS Secrets Manager The company has an AWS Lambda function that calls the application API to test the functionality The company also has created an AWS CloudTrail trail in the account

The application's developer has attached the SecretsManagerReadWnte AWS managed IAM policy to an IAM role The IAM role is associated with the instance profile that is attached to the EC2 instances The solutions architect has invoked the Lambda function for testing

The solutions architect must replace the SecretsManagerReadWnte policy with a new policy that provides least privilege access to the Secrets Manager actions that the application requires

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Generate a policy based on CloudTrail events for the IAM role Use the generated policy output to create a new IAM policy Use the newly generated IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role

B.

Create an analyzer in AWS Identity and Access Management Access Analyzer Use the IAM role's Access Advisor findings to create a new IAM policy Use the newly created IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role

C.

Use the aws cloudtrail lookup-events AWS CLI command to filter and export CloudTrail events that are related to Secrets Manager Use a new IAM policy that contains the actions from CloudTrail to replace the SecretsManagerReadWnte policy that is attached to the IAM role

D.

Use the IAM policy simulator to generate an IAM policy for the IAM role Use the newly generated IAM policy to replace the SecretsManagerReadWnte policy that is attached to the IAM role

Question 68

A company is planning to migrate 1,000 on-premises servers to AWS. The servers run on several VMware clusters in the company’s data center. As part of the migration plan, the company wants to gather server metrics such as CPU details, RAM usage, operating system information, and running processes. The company then wants to query and analyze the data.

Which solution will meet these requirements?

Options:

A.

Deploy and configure the AWS Agentless Discovery Connector virtual appliance on the on-premises hosts. Configure Data Exploration in AWS Migration Hub. Use AWS Glue to perform an ETL job against the data. Query the data by using Amazon S3 Select.

B.

Export only the VM performance information from the on-premises hosts. Directly import the required data into AWS Migration Hub. Update any missing information in Migration Hub. Query the data by using Amazon QuickSight.

C.

Create a script to automatically gather the server information from the on-premises hosts. Use the AWS CLI to run the put-resource-attributes command to store the detailed server data in AWS Migration Hub. Query the data directly in the Migration Hub console.

D.

Deploy the AWS Application Discovery Agent to each on-premises server. Configure Data Exploration in AWS Migration Hub. Use Amazon Athena to run predefined queries against the data in Amazon S3.

Question 69

A company collects air quality data from sensors. The company plans to use the MQTT protocol to send the data to AWS IoT Core. The company will process the data and then will store the data in an Amazon Aurora database.

During periods of low air quality, sensors will send data more frequently. The company must buffer the data during these periods to make sure that no data is lost before the data is processed and stored.

Which solution will meet these requirements?

Options:

A.

Create an Amazon Kinesis data stream. Create an AWS IoT rule action and set the data stream as the target. Create an AWS Step Functions state machine that is invoked by the data stream. Use the state machine to process and store the data.

B.

Create an Amazon Kinesis data stream. Create an AWS IoT rule action and set the data stream as the target. Create an application that runs on an Amazon ECS cluster with the AWS Fargate launch type. Configure the application to read data from the data stream, process the data, and store the data.

C.

Create an Amazon SQS queue. Create an AWS IoT rule action and set the SQS queue as the target. Create an AWS Step Functions state machine that is invoked by the SQS queue. Use the state machine to process and store the data.

D.

Create an Amazon SNS topic. Create an AWS IoT rule action and set the SNS topic as the target. Create an application that runs on an Amazon ECS cluster with the AWS Fargate launch type. Configure the application to read data from the SNS topic, process the data, and store the data.

Question 70

A company is developing a gene reporting device that will collect genomic information to assist researchers with collecting large samples of data from a diverse population. The device will push 8 KB of genomic data every second to a data platform that will need to process and analyze the data and provide information back to researchers. The data platform must meet the following requirements:

•Provide near-real-time analytics of the inbound genomic data

•Ensure the data is flexible, parallel, and durable

•Deliver results of processing to a data warehouse

Which strategy should a solutions architect use to meet these requirements?

Options:

A.

Use Amazon Kinesis Data Firehose to collect the inbound sensor data, analyze the data with Kinesis clients, and save the results to an Amazon RDS instance.

B.

Use Amazon Kinesis Data Streams to collect the inbound sensor data, analyze the data with Kinesis clients, and save the results to an Amazon Redshift cluster using Amazon EMR.

C.

Use Amazon S3 to collect the inbound device data, analyze the data from Amazon SOS with Kinesis, and save the results to an Amazon Redshift cluster.

D.

Use an Amazon API Gateway to put requests into an Amazon SQS queue, analyze the data with an AWS Lambda function, and save the results to an Amazon Redshift cluster using Amazon EMR.

Question 71

A company has implemented a new security requirement According to the new requirement, the company must scan all traffic from corporate AWS instances in the company's VPC for violations of the company's security policies. As a result of these scans the company can block access to and from specific IP addresses.

To meet the new requirement, the company deploys a set of Amazon EC2 instances in private subnets to serve as transparent proxies The company installs approved proxy server software on these EC2 instances The company modifies the route tables on all subnets to use the corresponding EC2 instances with proxy software as the default route The company also creates security groupsthat are compliant with the security policies and assigns these security groups to the EC2 instances

Despite these configurations, the traffic of the EC2 instances in their private subnets is not being properly forwarded to the internet.

What should a solutions architect do to resolve this issue?

Options:

A.

Disable source'destination checks on the EC2 instances that run the proxy software

B.

Add a rule to the security group that is assigned to the proxy EC2 instances to allow all traffic between instances that have this security group Assign this security group to all EC2 instances in the VPC.

C.

Change the VPC's DHCP options set Set the DNS server options to point to the addresses of the proxy EC2 instances

D.

Assign one additional elastic network interface to each proxy EC2 instance Ensure that one of these network interfaces has a route to the private subnets Ensure that the other network interface has a route to the internet.

Question 72

A large company is running a popular web application. The application runs on several Amazon EC2 Linux Instances in an Auto Scaling group in a private subnet. An Application Load Balancer is targeting the Instances In the Auto Scaling group in the private subnet. AWS Systems Manager Session Manager Is configured, and AWS Systems Manager Agent is running on all the EC2 instances.

The company recently released a new version of the application Some EC2 instances are now being marked as unhealthy and are being terminated As a result, the application is running at reduced capacity A solutions architect tries to determine the root cause by analyzing Amazon CloudWatch logs that are collected from the application, but the logs are inconclusive

How should the solutions architect gain access to an EC2 instance to troubleshoot the issue1?

Options:

A.

Suspend the Auto Scaling group's HealthCheck scaling process. Use Session Manager to log in to an instance that is marked as unhealthy

B.

Enable EC2 instance termination protection Use Session Manager to log In to an instance that is marked as unhealthy.

C.

Set the termination policy to Oldestinstance on the Auto Scaling group. Use Session Manager to log in to an instance that is marked as unhealthy

D.

Suspend the Auto Scaling group's Terminate process. Use Session Manager to log in to an instance that is marked as unhealthy

Question 73

A startup company recently migrated a large ecommerce website to AWS The website has experienced a 70% increase in sates Software engineers are using a private GitHub repository to manage code The DevOps team is using Jenkins for builds and unit testing The engineers need to receive notifications for bad builds and zero downtime during deployments The engineers also need to ensure any changes to production are seamless for users and can be rolled back in the event of a major issue

The software engineers have decided to use AWS CodePipeline to manage their build and deployment process

Which solution will meet these requirements'?

Options:

A.

Use GitHub websockets to trigger the CodePipeline pipeline Use the Jenkins plugin for AWS CodeBuild to conduct unit testing Send alerts to an Amazon SNS topic for any bad builds Deploy inan in-place all-at-once deployment configuration using AWS CodeDeploy

B.

Use GitHub webhooks to trigger the CodePipelme pipeline Use the Jenkins plugin for AWS CodeBuild to conduct unit testing Send alerts to an Amazon SNS topic for any bad builds Deploy in a blue'green deployment using AWS CodeDeploy

C.

Use GitHub websockets to trigger the CodePipelme pipeline. Use AWS X-Ray for unit testing and static code analysis Send alerts to an Amazon SNS topic for any bad builds Deploy in a blue/green deployment using AWS CodeDeploy.

D.

Use GitHub webhooks to trigger the CodePipeline pipeline Use AWS X-Ray for unit testing and static code analysis Send alerts to an Amazon SNS topic for any bad builds Deploy in an m-place. all-at-once deployment configuration using AWS CodeDeploy

Question 74

A company has multiple applications that run on Amazon EC2 instances in private subnets in a VPC. The company has deployed multiple NAT gateways in multiple Availability Zones for internet access. The company wants to block certain websites from being accessed through the NAT gateways. The company also wants to identify the internet destinations that the EC2 instances access.

The company has already created VPC flow logs for the NAT gateways' elastic network interfaces. Which solution will meet these requirements?

Options:

A.

Use Amazon CloudWatch Logs Insights to query the logs and determine the internet destinations that the EC2 instances communicate with. Use AWS Network Firewall to block

the websites.

B.

Use Amazon CloudWatch Logs Insights to query the logs and determine the internet destinations that the EC2 instances communicate with. Use AWS WAF to block the websites.

C.

Use the BytesInFromSource and BytesInFromDestination Amazon CloudWatch metrics to determine the internet destinations that the EC2 instances communicate with. Use AWS Network Firewall to block the websites.

D.

Use the BytesInFromSource and BytesInFromDestination Amazon CloudWatch metrics to determine the internet destinations that the EC2 instances communicate with. Use AWS WAF to block the websites.

Question 75

A company needs to optimize the cost of backups for Amazon Elastic File System (Amazon EFS). A solutions architect has already configured a backup plan in AWS Backup for the EFS backups. The backup plan contains a rule with a lifecycle configuration to transition EFS backups to cold storage after 7 days and to keep the backups for an additional 90 days.

After I month, the company reviews its EFS storage costs and notices an increase in the EFS backup costs. The EFS backup cold storage produces almost double the cost of the EFS warm backup storage.

What should the solutions architect do to optimize the cost?

Options:

A.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 1 day. Set the backup retention period to 30 days.

B.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 8 days. Set the backup retention period to 30 days.

C.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 1 day. Set the backup retention period to 90 days.

D.

Modify the backup rule's lifecycle configuration to move the EFS backups to cold storage after 8 days. Set the backup retention period to 98 days.

Question 76

A company has hundreds of AWS accounts. The company recently implemented a centralized internal process for purchasing new Reserved Instances and modifying existing Reserved Instances. This process requires all business units that want to purchase or modify Reserved Instances to submit requests to a dedicated team for procurement. Previously, business units directly purchased or modified Reserved Instances in their own respective AWS accounts autonomously.

A solutions architect needs to enforce the new process in the most secure way possible.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

Options:

A.

Ensure that all AWS accounts are part of an organization in AWS Organizations with all features enabled.

B.

Use AWS Config to report on the attachment of an IAM policy that denies access to the ec2:PurchaseReservedInstancesOffering action and the ec2:ModifyReservedInstances action.

C.

In each AWS account, create an IAM policy that denies the ec2:PurchaseReservedInstancesOffering action and the ec2:ModifyReservedInstances action.

D.

Create an SCP that denies the ec2:PurchaseReservedInstancesOffering action and theec2:ModifyReservedInstances action. Attach the SCP to each OU of the organization.

E.

Ensure that all AWS accounts are part of an organization in AWS Organizations that uses the consolidated billing feature.

Question 77

A company hosts a metadata API on Amazon EC2 instances behind an internet-facing Application Load Balancer (ALB). Only internal applications that run on EC2 instances in separate AWS accounts need to access the metadata API. All the internal EC2 instances use NAT gateways.

A new policy requires that traffic between internal applications must not travel across the public internet.

Which solution will meet this requirement?

Options:

A.

Create an HTTP API in Amazon API Gateway. Configure a route for the metadata API. Configure a VPC link to the VPC that hosts the metadata API's EC2 instances. Update the API Gateway resource policy to include the account IDs of the internal applications that access the metadata API.

B.

Create a REST API in Amazon API Gateway. Specify the API Gateway endpoint type as private. Associate the REST API with the metadata API's VPC. Create a gateway VPC endpoint for the REST API. Share the endpoint across accounts by using AWS Resource Access Manager (AWS RAM). Configure the internal applications to connect to the gateway VPC endpoint.

C.

Create an internal ALB. Register the metadata API's EC2 instances with the internal ALB. Create an internal Network Load Balancer (NLB) that has a target group type of ALB. Register the internal ALB as the target. Configure an AWS PrivateLink endpoint service for the NLB. Grant the internal applications access to the metadata API through the PrivateLink endpoint.

D.

Create an internal ALB. Register the metadata API's EC2 instances with the internal ALB. Configure an AWS PrivateLink endpoint service for the internal ALB. Grant the internal applications access to the metadata API through the PrivateLink endpoint.

Question 78

A company hosts a multi-tier data processing application that consists of a static web application frontend and APIs that are hosted on multiple Amazon EC2 instances. The application stores search data on a single-node Amazon OpenSearch Service cluster that runs on an EC2 instance. The application stores additional data in a PostgreSQL database that runs on another EC2 instance. An NGINX server that is hosted on an EC2 instance serves the web application.

The company has experienced some support issues with the application and wants to modernize the application.

Which solution meets these requirements with the LEAST operational overhead?

Options:

A.

Create an Amazon ECS cluster that runs on AWS Fargate. Configure the ECS cluster to pull images from the Amazon ECR public repositories for OpenSearch Service, PostgreSQL, and NGINX and from a private repository for the APIs.

B.

Host the web application on Amazon CloudFront by using an Amazon S3 origin. Use OpenSearch Service to store the search data and migrate the PostgreSQL database to an Amazon Aurora PostgreSQL cluster. Run the APIs on AWS App Runner.

C.

Create an Amazon EKS cluster that has a managed node group. Configure the EKS cluster to pull images from the Amazon ECR public repositories for OpenSearch Service, PostgreSQL, and NGINX and from a private repository for the APIs.

D.

Configure AWS App Runner to pull images from the Amazon ECR public repositories for OpenSearch Service, PostgreSQL, and NGINX and from a private repository for the APIs. Deploy the images to App Runner.

Question 79

A company is deploying a new web-based application and needs a storage solution for the Linux application servers. The company wants to create a single location for updates to application data for all instances. The active dataset will be up to 100 GB in size. A solutions architect has determined that peak operations will occur for 3 hours daily and will require a total of 225 MiBps of read throughput.

The solutions architect must design a Multi-AZ solution that makes a copy of the data available in another AWS Region for disaster recovery (DR). The DR copy has an RPO of less than 1 hour.

Which solution will meet these requirements?

Options:

A.

Deploy a new Amazon Elastic File System (Amazon EFS) Multi-AZ file system. Configure the file system for 75 MiBps of provisioned throughput. Implementreplication to a file system in the DR Region.

B.

Deploy a new Amazon FSx for Lustre file system. Configure Bursting Throughput mode for the file system. Use AWS Backup to back up the file system to the DR Region.

C.

Deploy a General Purpose SSD (gp3) Amazon Elastic Block Store (Amazon EBS) volume with 225 MiBps of throughput. Enable Multi-Attach for the EBSvolume. Use AWS Elastic Disaster Recovery to replicate the EBS volume to the DR Region.

D.

Deploy an Amazon FSx for OpenZFS file system in both the production Region and the DR Region. Create an AWS DataSync scheduled task to replicate thedata from the production file system to the DR file system every 10 minutes.

Question 80

A retail company has an on-premises data center in Europe. The company also has a multi-Region AWS presence that includes the eu-west-1 and us-east-1 Regions. The company wants to be able to route network traffic from its on-premises infrastructure into VPCs in either of those Regions. The company also needs to support traffic that is routed directly between VPCs in those Regions. No single points of failure can exist on the network.

The company already has created two 1 Gbps AWS Direct Connect connections from its on-premises data center. Each connection goes into a separate Direct Connect location in Europe for high availability. These two locations are named DX-A and DX-B, respectively. Each Region has a single AWS Transit Gateway that is configured to route all inter-VPC traffic within that Region.

Which solution will meet these requirements?

Options:

A.

Create a private VIF from the DX-A connection into a Direct Connect gateway. Create a private VIF from the DX-B connection into the same Direct Connect gateway for high availability. Associate both the eu-west-1 and us-east-1 transit gateways with the Direct Connect gateway. Peer the transit gateways with each other to support cross-Region routing.

B.

Create a transit VIF from the DX-A connection into a Direct Connect gateway. Associate the eu-west-1 transit gateway with this Direct Connect gateway. Create a transit VIF from the DX-B connection into a separate Direct Connect gateway. Associate the us-east-1 transit gateway with this separate Direct Connect gateway. Peer the Direct Connect gateways with each other to support high availability and cross-Region routing.

C.

Create a transit VIF from the DX-A connection into a Direct Connect gateway. Create a transit VIF from the DX-B connection into the same Direct Connect gateway for high availability. Associate both the eu-west-1 and us-east-1 transit gateways with this Direct Connect gateway. Configure the Direct Connect gateway to route traffic between the transit gateways.

D.

Create a transit VIF from the DX-A connection into a Direct Connect gateway. Create a transit VIF from the DX-B connection into the same Direct Connect gateway for high availability. Associate both the eu-west-1 and us-east-1 transit gateways with this Direct Connect gateway. Peer the transit gateways with each other to support cross-Region routing.

Question 81

A scientific company needs to process text and image data from an Amazon S3 bucket. The data is collected from several radar stations during a live, time-critical phase of a deep space mission. The radar stations upload the data to the source S3 bucket. The data is prefixed by radar station identification number.

The company created a destination S3 bucket in a second account. Data must be copied from the source S3 bucket to the destination S3 bucket to meet a compliance objective. The replication occurs through the use of an S3 replication rule to cover all objects in the source S3 bucket.

One specific radar station is identified as having the most accurate data. Data replication at this radar station must be monitored for completion within 30 minutes after the radar station uploads the objects to the source S3 bucket.

What should a solutions architect do to meet these requirements?

Options:

A.

Set up an AWS DataSync agent to replicate the prefixed data from the source S3 bucket to the destination S3 bucket. Select to use all available bandwidth on the task, and monitor the task to ensure that it is in the TRANSFERRING status. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert if this status changes.

B.

In the second account, create another S3 bucket to receive data from the radar station with the most accurate data. Set up a new replication rule for this new S3 bucket to separate the replication from the other radar stations. Monitor the maximum replication time to the destination. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert when the time exceeds the desired threshold.

C.

Enable Amazon S3 Transfer Acceleration on the source S3 bucket, and configure the radar station with the most accurate data to use the new endpoint. Monitor the S3 destination bucket's TotalRequestLatency metric. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert if this status changes.

D.

Create a new S3 replication rule on the source S3 bucket that filters for the keys that use the prefix of the radar station with the most accurate data. Enable S3 Replication Time Control (S3 RTC). Monitor the maximum replication time to the destination. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert when the time exceeds the desired threshold.

Question 82

A company runs AWS workloads that are integrated with software as a service (SaaS) applications. The company needs to analyze the SaaS applications to identify unused licenses. Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Use AWS License Manager automated discovery to retrieve audit logs from the SaaS applications. Use Amazon Athena to analyze the data and to identify unused SaaS licenses.

B.

Create an AWS Lambda function to retrieve audit logs from the SaaS applications and to store the data in Amazon S3. Use Amazon EMR to analyze the data and to identify unused SaaS licenses.

C.

Use AWS AppFabric to ingest audit logs from the SaaS applications into Amazon S3. Use Amazon Athena to analyze the data and to identify unused SaaS licenses.

D.

Use AWS App Runner to ingest audit logs from the SaaS applications into Amazon S3. Use Amazon EMR to analyze the data and to identify unused SaaS licenses.

Question 83

A company runs an application on AWS. The application uses an Amazon Aurora MySQL database that is encrypted with the default AWS managed AWS KMS key.

The company must implement a solution to rotate the database encryption key every 180 days. The solution must provide a notification if the encryption key is noncompliant with this standard.

Which solution will meet these requirements?

Options:

A.

Configure the rotation period for the existing AWS managed KMS key to be 180 days. Implement the cmk-backing-key-rotation-enabled AWS Config managed rule for the existing KMS key. Configure AWS Config to use Amazon SNS to notify the security team if key rotation is noncompliant.

B.

Create a new AWS managed KMS key with automatic rotation set for 180 days. Take a snapshot of the database. Restore the snapshot to a new Aurora cluster that uses the new KMS key. Create an AWS Config custom rule that uses an AWS Lambda function to validate the key rotation period. Configure AWS Config to use Amazon SES to notify the security team if key encryption is noncompliant.

C.

Create a new customer managed KMS key with automatic rotation set for 180 days. Take asnapshot of the database. Restore the snapshot to a new Aurora cluster that uses the new KMS key. Create an AWS Config custom rule that uses an AWS Lambda function to validate the key rotation period. Configure AWS Config to use Amazon SNS to notify the security team if key encryption is noncompliant.

D.

Create a new customer managed KMS key with automatic rotation set for 180 days. Update the database to use the new KMS key for encryption. Implement the cmk-backing-key-rotation-enabled AWS Config managed rule for the new KMS key. Configure AWS Config to use Amazon SES to notify the security team if key rotation is noncompliant.

Question 84

To abide by industry regulations, a solutions architect must design a solution that will store a company's critical data in multiple public AWS Regions, including in the United States, where the company's headquarters is located The solutions architect is required to provide access to the data stored in AWS to the company's global WAN network The security team mandates that no traffic accessing this data should traverse the public internet

How should the solutions architect design a highly available solution that meets the requirements and is cost-effective'?

Options:

A.

Establish AWS Direct Connect connections from the company headquarters to all AWS Regions in use the company WAN to send traffic over to the headquarters and then to the respective DX connection to access the data

B.

Establish two AWS Direct Connect connections from the company headquarters to an AWS Region Use the company WAN to send traffic over a DX connection Use inter-region VPC peering to access the data in other AWS Regions

C.

Establish two AWS Direct Connect connections from the company headquarters to an AWS Region Use the company WAN to send traffic over a DX connection Use an AWS transit VPC solution to access data in other AWS Regions

D.

Establish two AWS Direct Connect connections from the company headquarters to an AWS Region Use the company WAN to send traffic over a DX connection Use Direct Connect Gateway to access data in other AWS Regions.

Question 85

A company has an application that uses Amazon EC2 instances in an Auto Scaling group. The quality assurance (QA) department needs to launch and test the application. The application environments are currently launched by the manager of the department using an AWS CloudFormation template. To launch the stack, the manager uses a role with permission to use CloudFormation, EC2, and Auto Scaling APIs. The manager wants to allow QA to launch environments, but does not want to grant broad permissions to each user.

Which set up would achieve these goals?

Options:

A.

Upload the AWS CloudFormation template to Amazon S3. Give users in the QA department permission to assume the manager's role, restricts the permissions to the template and the resources it creates. Train users to launch the template from the CloudFormation console.

B.

Create an AWS Service Catalog product from the environment template. Add a launch constraint to the product with the existing manager's department permission to use AWS Service Catalog APIs only. Train users to launch the template from the AWS Service Catalog console.

C.

Upload the AWS CloudFormation template to Amazon S3. Give users in the QA department permission to use CloudFormation and restrict the permissions to the template and the resources it creates. Train users to launch the template from the CloudFormation console.

D.

Create an AWS Elastic Beanstalk application from the environment template. Give users in the QA department permission to use Elastic Beanstalk only. Train users to launch Elastic Beanstalk environments with the Elastic Beanstalk CLI, passing the existing role to the environment.

Question 86

An AWS customer has a web application that runs on premises. The web application fetches data from a third-party API that is behind a firewall. The third party accepts only one public CIDR block in each client's allow list.

The customer wants to migrate their web application to the AWS Cloud. The application will be hosted on a set of Amazon EC2 instances behind an Application Load Balancer (ALB) in a VPC. The ALB is located in public subnets. The EC2 instances are located in private subnets. NAT gateways provide internet access to the private subnets.

How should a solutions architect ensure that the web application can continue to call the third-parly API after the migration?

Options:

A.

Associate a block of customer-owned public IP addresses to the VPC. Enable public IP addressing for public subnets in the VPC.

B.

Register a block of customer-owned public IP addresses in the AWS account. Create Elastic IP addresses from the address block and assign them lo the NAT gateways in the VPC.

C.

Create Elastic IP addresses from the block of customer-owned IP addresses. Assign the static Elastic IP addresses to the ALB.

D.

Register a block of customer-owned public IP addresses in the AWS account. Set up AWS Global Accelerator to use Elastic IP addresses from the address block. Set the ALB as the accelerator endpoint.

Question 87

A company is migrating its on-premises file transfer solution to AWS Transfer Family. The on-premises host includes an SFTP server to receive files, an application that performs a transformation of the files, and a messaging server. The transformations run every 5 minutes. When a transformation is complete, the application sends a message to a queue on the messaging server. The company needs to simplify the solution and reduce the management of the components. What should the company do to meet these requirements with the LEAST operational overhead?

Options:

A.

Configure Transfer Family to use Amazon EFS storage. Use a cron job on Amazon EFS to perform the transformations. Configure the cron job to publish a message to an Amazon SNS topic when a file has been transformed.

B.

Configure Transfer Family to use Amazon S3 storage. Use Amazon EMR to perform the transformations. Configure Amazon EMR to send a message to an Amazon SNS topic when a file has been transformed.

C.

Configure Transfer Family to use Amazon S3 storage. Use AWS Glue to perform the transformations after S3 event notifications. Configure AWS Glue to send a message to an Amazon SQS queue when a file has been transformed.

D.

Configure Transfer Family to use Amazon EFS storage. Create an AWS Glue time-based job to run every 5 minutes to initiate an AWS Glue transformation. Configure AWS Glue to send a message to an Amazon SQS queue when a file has been transformed.

Question 88

A company's factory and automaton applications are running in a single VPC More than 23 applications run on a combination of Amazon EC2, Amazon Elastic Container Service (Amazon ECS), are Amazon RDS.

The company has software engineers spread across three teams. One of the three teams owns each application, and each team is responsible for the cost and performance of all of its applications.Team resources have tags that represent their application and team. The learns use IAH access for daily activities.

The company needs to determine which costs on the monthly AWS bill are attributable to each application or team. The company also must be able to create reports to compare costs item the last 12 months and to help forecast costs tor the next 12 months. A solution architect must recommend an AWS Billing and Cost Management solution that provides these cost reports.

Which combination of actions will meet these requirement? Select THREE.)

Options:

A.

Activate the user-defined cost allocation tags that represent the application and the team.

B.

Activate the AWS generated cost allocation tags that represent the application and the team.

C.

Create a cost category for each application in Billing and Cost Management

D.

Activate IAM access to Billing and Cost Management.

E.

Create a cost budget

F.

Enable Cost Explorer.

Question 89

A company runs a processing engine in the AWS Cloud. The engine processes environmental data from logistics centers to calculate a sustainability index. The company has millions of devices in logistics centers that are spread across Europe. The devices send information to the processing engine through a RESTful API. The API experiences unpredictable bursts of traffic. The company must implement a solution to process all data that the devices send to the processing engine. Data loss is unacceptable. Which solution will meet these requirements?

Options:

A.

Create an Application Load Balancer (ALB) for the RESTful API. Create an Amazon SQS queue. Create a listener and a target group for the ALB. Add the SQS queue as the target. Use a container that runs in Amazon ECS with the Fargate launch type to process messages in the queue.

B.

Create an Amazon API Gateway HTTP API that implements the RESTful API. Create an Amazon SQS queue. Create an API Gateway service integration with the SQS queue. Create an AWS Lambda function to process messages in the SQS queue.

C.

Create an Amazon API Gateway REST API that implements the RESTful API. Create a fleet of Amazon EC2 instances in an Auto Scaling group. Create an API Gateway Auto Scaling group proxy integration. Use the EC2 instances to process incoming data.

D.

Create an Amazon CloudFront distribution for the RESTful API. Create a data stream in Amazon Kinesis Data Streams. Set the data stream as the origin for the distribution. Create an AWS Lambda function to consume and process data in the data stream.

Question 90

A company has multiple AWS accounts and manages these accounts with AWS Organizations. A developer was given IAM user credentials to access AWS resources. The developer should have read-only access to all Amazon S3 buckets in the account. However, when the developer tries to access the S3 buckets from the console, they receive an access denied error message with no buckets listed.

A solutions architect reviews the permissions and finds that the developer's IAM user is listed as having read-only access to all S3 buckets in the account.

Which additional steps should the solutions architect take to troubleshoot the issue? (Select TWO.)

Options:

A.

Check the bucket policies for all S3 buckets.

B.

Check the ACLs for all S3 buckets.

C.

Check the SCPs set at the organizational units (OUs).

D.

Check for the permissions boundaries set for the IAM user.

E.

Check if an appropriate IAM role is attached to the IAM user.

Question 91

A company needs to aggregate Amazon CloudWatch logs from its AWS accounts into one central logging account. The collected logs must remain in the AWS Region of creation. The central logging account will then process the logs, normalize the logs into standard output format, and stream the output logs to a security tool for more processing.

A solutions architect must design a solution that can handle a large volume of logging data that needs to be ingested. Less logging will occur outside normal business hours than during normal business hours. The logging solution must scale with the anticipated load. The solutions architect has decided to use an AWS Control Tower design to handle the multi-account logging process.

Which combination of steps should the solutions architect take to meet the requirements? (Select THREE.)

Options:

A.

Create a destination Amazon Kinesis data stream in the central logging account.

B.

Create a destination Amazon SQS queue in the central logging account.

C.

Create an IAM role that grants Amazon CloudWatch Logs the permission to add data to the Amazon Kinesis data stream. Create a trust policy. Specify the trust policy in the IAM role. In each member account, create a subscription filter for each log group to send data to the Kinesis data stream.

D.

Create an IAM role that grants Amazon CloudWatch Logs the permission to add data to the Amazon SQS queue. Create a trust policy. Specify the trust policy in the IAM role. In each member account, create a single subscription filter for all log groups to send data to the SQS queue.

E.

Create an AWS Lambda function. Program the Lambda function to normalize the logs in the central logging account and to write the logs to the security tool.

F.

Create an AWS Lambda function. Program the Lambda function to normalize the logs in the member accounts and to write the logs to the security tool.

Question 92

A health insurance company stores personally identifiable information (PII) in an Amazon S3 bucket. The company uses server-side encryption with S3 managed encryption keys (SSE-S3) to encrypt the objects. According to a new requirement, all current and future objects in the S3 bucket must be encrypted by keys that the company’s security team manages. The S3 bucket does not have versioning enabled.

Which solution will meet these requirements?

Options:

A.

In the S3 bucket properties, change the default encryption to SSE-S3 with a customer managed key. Use the AWS CLI to re-upload all objects in the S3 bucket. Set an S3 bucket policy to deny unencrypted PutObject requests.

B.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to deny unencrypted PutObject requests. Use the AWS CLI to re-upload all objects in the S3 bucket.

C.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to automatically encrypt objects on GetObject and PutObject requests.

D.

In the S3 bucket properties, change the default encryption to AES-256 with a customer managed key. Attach a policy to deny unencrypted PutObject requests to any entities that access the S3 bucket. Use the AWS CLI to re-upload all objects in the S3 bucket.

Question 93

A company is developing and hosting several projects in the AWS Cloud. The projects are developed across multiple AWS accounts under the same organization in AWS Organizations. The company requires the cost lor cloud infrastructure to be allocated to the owning project. The team responsible for all of the AWS accounts has discovered that several Amazon EC2 instances are lacking the Project tag used for cost allocation.

Which actions should a solutions architect take to resolve the problem and prevent it from happening in the future? (Select THREE.)

Options:

A.

Create an AWS Config rule in each account to find resources with missing tags.

B.

Create an SCP in the organization with a deny action for ec2:Runlnstances if the Project tag is missing.

C.

Use Amazon Inspector in the organization to find resources with missing tags.

D.

Create an IAM policy in each account with a deny action for ec2:RunInstances if the Project tag is missing.

E.

Create an AWS Config aggregator for the organization to collect a list of EC2 instances with the missing Project tag.

F.

Use AWS Security Hub to aggregate a list of EC2 instances with the missing Project tag.

Question 94

A global ecommerce company has many data centers worldwide. The company needs scalable cloud storage for legacy file applications. Requirements:

Must support iSCSI access from on-premises servers.

Must support point-in-time snapshots via AWS Backup.

Must retain low-latency access to frequently accessed data.Which solution will meet these requirements?

Options:

A.

Provision an AWS Storage Gateway tape gateway with S3 and AWS Backup.

B.

Use Amazon FSx File Gateway and S3 File Gateway. Use AWS Backup.

C.

Provision an AWS Storage Gateway volume gateway in cache mode. Back up the volumes using AWS Backup.

D.

Provision an AWS Storage Gateway file gateway in cache mode. Use AWS Backup.

Question 95

A company in the United States (US) has acquired a company in Europe. Both companies use the AWS Cloud. The US company has built a new application with a microservices architecture. The US company is hosting the application across five VPCs in the us-east-2 Region. The application must be able to access resources in one VPC in the eu-west-1 Region. However, the application must not be able to access any other VPCs. The VPCs in both Regions have no overlapping CIDR ranges. All accounts are already consolidated in one organization in AWS Organizations. Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create one transit gateway in eu-west-1. Attach the VPCs in us-east-2 and the VPC in eu-west-1 to the transit gateway. Create the necessary route entries in each VPC so that the traffic is routed through the transit gateway.

B.

Create one transit gateway in each Region. Attach the involved subnets to the regional transit gateway. Create the necessary route entries in the associated route tables for each subnet so that the traffic is routed through the regional transit gateway. Peer the two transit gateways.

C.

Create a full mesh VPC peering connection configuration between all the VPCs. Create the necessary route entries in each VPC so that the traffic is routed through the VPC peering connection.

D.

Create one VPC peering connection for each VPC in us-east-2 to the VPC in eu-west-1. Create the necessary route entries in each VPC so that the traffic is routed through the VPC peering connection.

Question 96

A company needs to improve the security of its web-based application on AWS. The application uses Amazon CloudFront with two custom origins. The first custom origin routes requests to an Amazon API Gateway HTTP API. The second custom origin routes traffic to an Application Load Balancer (ALB) The application integrates with an OpenlD Connect (OIDC) identity provider (IdP) for user management.

A security audit shows that a JSON Web Token (JWT) authorizer provides access to the API The security audit also shows that the ALB accepts requests from unauthenticated users

A solutions architect must design a solution to ensure that all backend services respond to only authenticated users

Which solution will meet this requirement?

Options:

A.

Configure the ALB to enforce authentication and authorization by integrating the ALB with the IdP Allow only authenticated users to access the backend services

B.

Modify the CloudFront configuration to use signed URLs Implement a permissive signing policy that allows any request to access the backend services

C.

Create an AWS WAF web ACL that filters out unauthenticated requests at the ALB level. Allow only authenticated traffic to reach the backend services.

D.

Enable AWS CloudTrail to log all requests that come to the ALB Create an AWS Lambda function to analyze the togs and block any requests that come from unauthenticated users.

Question 97

A solutions architect is reviewing a company's process for taking snapshots of Amazon RDS DB instances. The company takes automatic snapshots every day and retains the snapshots for 7 days.

The solutions architect needs to recommend a solution that takes snapshots every 6 hours and retains the snapshots for 30 days. The company uses AWS Organizations to manage all of its AWS accounts. The company needs a consolidated view of the health of the RDS snapshots.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Turn on the cross-account management feature in AWS Backup. Create a backup plan that specifies the frequency and retention requirements. Add a tag to the DB instances. Apply the backup plan by using tags. Use AWS Backup to monitor the status of the backups.

B.

Turn on the cross-account management feature in Amazon RDS. Create a snapshot global policy that specifies the frequency and retention requirements. Use the RDS console in the management account to monitor the status of the backups.

C.

Turn on the cross-account management feature in AWS CloudFormation. From the management account, deploy a CloudFormation stack set that contains a backup plan from AWS Backup that specifies the frequency and retention requirements. Create an AWS Lambda function in the management account tomonitor the status of the backups. Create an Amazon EventBridge rule in each account to run the Lambda function on a schedule.

D.

Configure AWS Backup in each account. Create an Amazon Data Lifecycle Manager lifecycle policy that specifies the frequency and retention requirements. Specify the DB instances as the target resource. Use the Amazon Data Lifecycle Manager console in each member account to monitor the status of the backups.

Question 98

A company is running a compute workload by using Amazon EC2 Spot Instances that are in an Auto Scaling group. The launch template uses two placement groups and a single instance type.

Recently, a monitoring system reported Auto Scaling instance launch failures that correlated with longer wait times for system users. The company needs to improve the overall reliability of the workload.

Which solution will meet this requirement?

Options:

A.

Replace the launch template with a launch configuration to use an Auto Scaling group thatuses attribute-based instance type selection.

B.

Create a new launch template version that uses attribute-based instance type selection. Configure the Auto Scaling group to use the new launch template version.

C.

Update the launch template Auto Scaling group to increase the number of placement groups.

D.

Update the launch template to use a larger instance type.

Question 99

A global manufacturing company plans to migrate the majority of its applications to AWS. However, the company is concerned about applications that need to remain within a specific country or in the company's central on-premises data center because of data regulatory requirements or requirements for latency of single-digit milliseconds. The company also is concerned about the applications that it hosts in some of its factory sites, where limited network infrastructure exists.

The company wants a consistent developer experience so that its developers can build applications once and deploy on premises, in the cloud, or in a hybrid architecture.

The developers must be able to use the same tools, APIs, and services that are familiar to them.

Which solution will provide a consistent hybrid experience to meet these requirements?

Options:

A.

Migrate all applications to the closest AWS Region that is compliant. Set up an AWS Direct Connect connection between the central on-premises data center and AWS. Deploy a Direct Connect gateway.

B.

Use AWS Snowball Edge Storage Optimized devices for the applications that have data regulatory requirements or requirements for latency of single-digit milliseconds. Retain the devices on premises. Deploy AWS Wavelength to host the workloads in the factory sites.

C.

Install AWS Outposts for the applications that have data regulatory requirements or requirements for latency of single-digit milliseconds. Use AWS Snowball Edge Compute Optimized devices to host the workloads in the factory sites.

D.

Migrate the applications that have data regulatory requirements or requirements for latency of single-digit milliseconds to an AWS Local Zone. Deploy AWS Wavelength to host the workloads in the factory sites.

Question 100

A company's CISO has asked a Solutions Architect to re-engineer the company's current CI/CD practices to make sure patch deployments to its applications can happen as quickly as possible with minimal downtime if vulnerabilities are discovered. The company must also be able to quickly roll back a change in case of errors.

The web application is deployed in a fleet of Amazon EC2 instances behind an Application Load Balancer. The company is currently using GitHub to host the application source code, and has configured an AWS CodeBuild project to build the application. The company also intends to use AWS CodePipeline to trigger builds from GitHub commits using the existing CodeBuild project.

What CI/CD configuration meets all of the requirements?

Options:

A.

Configure CodePipeline with a deploy stage using AWS CodeDeploy configured for in-place deployment. Monitor the newly deployed code, and, if there are any issues, push another code update.

B.

Configure CodePipeline with a deploy stage using AWS CodeDeploy configured for blue/green deployments. Monitor the newly deployed code, and, if there are any issues, trigger a manual rollback using CodeDeploy.

C.

Configure CodePipeline with a deploy stage using AWS CloudFormation to create a pipeline for test and production stacks. Monitor the newly deployed code, and, if there are any issues, push another code update.

D.

Configure the CodePipeline with a deploy stage using AWS OpsWorks and in-place deployments. Monitor the newly deployed code, and, if there are any issues, push another code update.

Question 101

A company is deploying a third-party web application on AWS. The application is packaged as a Docker image. The company has deployed the Docker image as an AWS

Fargate service in Amazon Elastic Container Service (Amazon ECS). An Application Load Balancer (ALB) directs traffic to the application.

The company needs to give only a specific list of users the ability to access the application from the internet. The company cannot change the application and cannot integrate the application with an identity provider. All users must be authenticated through multi-factor authentication (MFA).

Which solution will meet these requirements?

Options:

A.

Create a user pool in Amazon Cognito. Configure the pool for the application. Populate the pool with the required users. Configure the pool to require MFA.Configure a listener rule on the ALB to require authentication through the Amazon Cognito hosted UI.

B.

Configure the users in AWS Identity and Access Management (IAM). Attach a resource policy to the Fargate service to require users to use MFA. Configure alistener rule on the ALB to require authentication through IAM.

C.

Configure the users in AWS Identity and Access Management (IAM). Enable AWS IAM Identity Center (AWS Single Sign-On). Configure resource protection forthe ALB. Create a resource protection rule to require users to use MFA.

D.

Create a user pool in AWS Amplify. Configure the pool for the application. Populate the pool with the required users. Configure the pool to require MFA.Configure a listener rule on the ALB to require authentication through the Amplify hosted UI.

Question 102

A company has many AWS accounts in an organization in AWS Organizations. The accounts contain many Amazon EC2 instances that run different types of workloads. The workloads have different usage patterns.

The company needs recommendations for how to rightsize the EC2 instances based on CPU and memory usage during the last 90 days.

Which combination of steps will provide these recommendations? (Select THREE.)

Options:

A.

Opt in to AWS Compute Optimizer and enable trusted access for Compute Optimizer for the organization.

B.

Configure a delegated administrator account for AWS Systems Manager for the organization.

C.

Use an AWS CloudFormation stack set to enable detailed monitoring for all the EC2 instances.

D.

Install and configure the Amazon CloudWatch agent on all the EC2 instances to send memory utilization metrics to CloudWatch.

E.

Activate enhanced metrics in AWS Compute Optimizer.

F.

Configure AWS Systems Manager to pass metrics to AWS Trusted Advisor.

Question 103

A company uses an organization in AWS Organizations to manage the company's AWS accounts. The company uses AWS CloudFormation to deploy all infrastructure. A finance team wants to buikJ a chargeback model The finance team asked each business unit to tag resources by using a predefined list of project values.

When the finance team used the AWS Cost and Usage Report in AWS Cost Explorer and filtered based on project, the team noticed noncompliant project values. The company wants to enforce the use of project tags for new resources.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Create a tag policy that contains the allowed project tag values in the organization's management account. Create an SCP that denies the cloudformation:CreateStack API operation unless a project tag is added. Attach the SCP to each OU.

B.

Create a tag policy that contains the allowed project tag values in each OU. Create an SCP that denies the cloudformation:CreateStack API operation unless a project tag is added. Attach the SCP to each OU.

C.

Create a tag policy that contains the allowed project tag values in the AWS management account. Create an 1AM policy that denies the cloudformation:CreateStack API operation unless a project tag is added. Assign the policy to each user.

D.

Use AWS Service Catalog to manage the CloudFoanation stacks as products. Use a TagOptions library to control project tag values. Share the portfolio with all OUs that are in the organization.

Question 104

A company wants to retire its Oracle Solaris NFS storage arrays. The company requires rapid data migration over its internet network connection to a combination of destinations for Amazon S3, Amazon EFS, and Amazon FSx for Windows File Server. The company also requires a full initial copy, as well as incremental transfers of changes until the retirement of the storage arrays. All data must be encrypted and checked for integrity.

What should a solutions architect recommend to meet these requirements?

Options:

A.

Configure AWS Application Migration Service. Create a project and deploy the AWS Replication Agent and token to the storage array. Run the migration plan to start the transfer.

B.

Configure AWS DataSync. Configure the DataSync agent and deploy it to the local network. Create a transfer task and start the transfer.

C.

Configure the aws S3 sync command. Configure the AWS client on the client side with credentials. Run the sync command to start the transfer.

D.

Configure AWS Transfer for FTP. Configure the FTP client with credentials. Script the client to connect and sync to start the transfer.

Question 105

A company runs an loT platform on AWS loT sensors in various locations send data to the company's Node js API servers on Amazon EC2 instances running behind an Application Load Balancer The data is stored in an Amazon RDS MySQL DB instance that uses a 4 TB General Purpose SSD volume

The number of sensors the company has deployed in the field has increased over time and is expected to grow significantly The API servers are consistently overloaded and RDS metrics show high write latency

Which of the following steps together will resolve the issues permanently and enable growth as new sensors are provisioned, while keeping this platform cost-efficient? {Select TWO.)

Options:

A.

Resize the MySQL General Purpose SSD storage to 6 TB to improve the volume's IOPS

B.

Re-architect the database tier to use Amazon Aurora instead of an RDS MySQL DB instance andadd read replicas

C.

Leverage Amazon Kinesis Data Streams and AWS Lambda to ingest and process the raw data

D.

Use AWS X-Ray to analyze and debug application issues and add more API servers to match the load

E.

Re-architect the database tier to use Amazon DynamoDB instead of an RDS MySQL DB instance

Question 106

A company needs to monitor a growing number of Amazon S3 buckets across two AWS Regions. The company also needs to track the percentage of objects that are

encrypted in Amazon S3. The company needs a dashboard to display this information for internal compliance teams.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a new S3 Storage Lens dashboard in each Region to track bucket and encryption metrics. Aggregate data from both Region dashboards into a singledashboard in Amazon QuickSight for the compliance teams.

B.

Deploy an AWS Lambda function in each Region to list the number of buckets and the encryption status of objects. Store this data in Amazon S3. Use AmazonAthena queries to display the data on a custom dashboard in Amazon QuickSight for the compliance teams.

C.

Use the S3 Storage Lens default dashboard to track bucket and encryption metrics. Give the compliance teams access to the dashboard directly in the S3console.

D.

Create an Amazon EventBridge rule to detect AWS Cloud Trail events for S3 object creation. Configure the rule to invoke an AWS Lambda function to recordencryption metrics in Amazon DynamoDB. Use Amazon QuickSight to display the metrics in a dashboard for the compliance teams.

Question 107

A solutions architect needs to define a reference architecture for a solution for three-tier applications with web. application, and NoSQL data layers. The reference architecture must meet the following requirements:

•High availability within an AWS Region

•Able to fail over in 1 minute to another AWS Region for disaster recovery

•Provide the most efficient solution while minimizing the impact on the user experience

Which combination of steps will meet these requirements? (Select THREE.)

Options:

A.

Use an Amazon Route 53 weighted routing policy set to 100/0 across the two selected Regions. Set Time to Live (TTL) to 1 hour.

B.

Use an Amazon Route 53 failover routing policy for failover from the primary Region to the disaster recovery Region. Set Time to Live (TTL) to 30 seconds.

C.

Use a global table within Amazon DynamoDB so data can be accessed in the two selected Regions.

D.

Back up data from an Amazon DynamoDB table in the primary Region every 60 minutes and then write the data to Amazon S3. Use S3 Cross-Region replication to copy the data from the primary Region to the disaster recovery Region. Have a script import the data into DynamoDB in a disaster recovery scenario.

E.

Implement a hot standby model using Auto Scaling groups for the web and application layers across multiple Availability Zones in the Regions. Use zonal Reserved Instances for the minimum number of servers and On-Demand Instances for any additional resources.

F.

Use Auto Scaling groups for the web and application layers across multiple Availability Zones in the Regions. Use Spot Instances for the required resources.

Question 108

A company is building an application on AWS. The application sends logs to an Amazon OpenSearch Service cluster for analysis. All data must be stored within a VPC.

Some of the company's developers work from home. Other developers work from three different company office locations. The developers need to access OpenSearch Service to analyze and visualize logs directly from their local development machines.

Which solution will meet these requirements?

Options:

A.

Configure and set up an AWS Client VPN endpoint. Associate the Client VPN endpoint with a subnet in the VPC. Configure a Client VPN self-service portal. Instruct the developers to connect by using the client for Client VPN.

B.

Create a transit gateway, and connect it to the VPC. Create an AWS Site-to-Site VPN. Create an attachment to the transit gateway. Instruct the developers to connect by using an OpenVPN client.

C.

Create a transit gateway, and connect it to the VPC. Order an AWS Direct Connect connection. Set up a public VIF on the Direct Connect connection. Associate the public VIF with the transit gateway. Instruct the developers to connect to the Direct Connect connection.

D.

Create and configure a bastion host in a public subnet of the VPC. Configure the bastion host security group to allow SSH access from the company CIDR ranges. Instruct the developers to connect by using SSH.

Question 109

A company has its cloud infrastructure on AWS A solutions architect needs to define the infrastructure as code. The infrastructure is currently deployed in one AWS Region. The company's business expansion plan includes deployments in multiple Regions across multiple AWS accounts

What should the solutions architect do to meet these requirements?

Options:

A.

Use AWS CloudFormation templates Add IAM policies to control the various accounts Deploy the templates across the multiple Regions

B.

Use AWS Organizations Deploy AWS CloudFormation templates from the management account Use AWS Control Tower to manage deployments across accounts

C.

Use AWS Organizations and AWS CloudFormation StackSets Deploy a CloudFormation template from an account that has the necessary IAM permissions

D.

Use nested stacks with AWS CloudFormation templates Change the Region by using nested stacks

Question 110

A company has five development teams that have each created five AWS accounts to develop and host applications. To track spending, the development teams log in to each account every month, record the current cost from the AWS Billing and Cost Management console, and provide the information to the company's finance team.

The company has strict compliance requirements and needs to ensure that resources are created only in AWS Regions in the United States. However, some resources have been created in other Regions.

A solutions architect needs to implement a solution that gives the finance team the ability to track and consolidate expenditures for all the accounts. The solution also must ensure that the company can create resources only in Regions in the United States.

Which combination of steps will meet these requirements in the MOST operationally efficient way? (Select THREE.)

Options:

A.

Create a new account to serve as a management account. Create an Amazon S3 bucket for the finance learn Use AWS Cost and Usage Reports to create monthly reports and to store the data in the finance team's S3 bucket.

B.

Create a new account to serve as a management account. Deploy an organization in AWS Organizations with all features enabled. Invite all the existing accounts to the organization. Ensure that each account accepts the invitation.

C.

Create an OU that includes all the development teams. Create an SCP that allows the creation of resources only in Regions that are in the United States. Apply the SCP to the OU.

D.

Create an OU that includes all the development teams. Create an SCP that denies (he creation of resources in Regions that are outside the United States. Apply the SCP to the OU.

E.

Create an 1AM role in the management account Attach a policy that includes permissions to view the Billing and Cost Management console. Allow the finance learn users to assume the role. Use AWS Cost Explorer and the Billing and Cost Management console to analyze cost.

F.

Create an 1AM role in each AWS account. Attach a policy that includes permissions to view the Billing and Cost Management console. Allow the finance team users to assume the role.

Question 111

A company is using AWS Organizations to manage multiple AWS accounts. For security purposes, the company requires the creation of an Amazon Simple Notification Service (Amazon SNS) topic that enables integration with a third-party alerting system in all the Organizations member accounts.

A solutions architect used an AWS CloudFormation template to create the SNS topic and stack sets to automate the deployment of Cloud Formation stacks. Trustedaccess has been enabled in Organizations.

What should the solutions architect do to deploy the CloudFormation StackSets in all AWS accounts?

Options:

A.

Create a stack set in the Organizations member accounts. Use service-managed permissions. Set deployment options to deploy to an organization. Use CloudFormation StackSets drift detection.

B.

Create stacks in the Organizations member accounts. Use self-service permissions. Set deployment options to deploy to an organization. Enable the CloudFormation StackSets automatic deployment.

C.

Create a stack set in the Organizations management account. Use service-managed permissions. Set deployment options to deploy to the organization. Enable CloudFormation StackSets automatic deployment.

D.

Create stacks in the Organizations management account. Use service-managed permissions. Set deployment options to deploy to the organization. Enable CloudFormation StackSets drift detection.

Question 112

A company has a website that runs on Amazon EC2 instances behind an Application Load Balancer (ALB). The instances are in an Auto Scaling group. The ALB is associated with an AWS WAF web ACL.

The website often encounters attacks in the application layer. The attacks produce sudden and significant increases in traffic on the application server. The access logs show that each attack originates from different IP addresses. A solutions architect needs to implement a solution to mitigate these attacks.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an Amazon CloudWatch alarm that monitors server access. Set a threshold based on access by IP address. Configure an alarm action that adds the IP address to the web ACL’s deny list.

B.

Deploy AWS Shield Advanced in addition to AWS WAF. Add the ALB as a protected resource.

C.

Create an Amazon CloudWatch alarm that monitors user IP addresses. Set a threshold based on access by IP address. Configure the alarm to invoke an AWS Lambda function to add a deny rule in the application server’s subnet route table for any IP addresses that activate the alarm.

D.

Inspect access logs to find a pattern of IP addresses that launched the attacks. Use an Amazon Route 53 geolocation routing policy to deny traffic from the countries that host those IP addresses.

Question 113

A software as a service (SaaS) company uses AWS to host a service that is powered by AWS PrivateLink. The service consists of proprietary software that runs on three Amazon EC2 instances behind a Network Load Balancer (NL B). The instances are in private subnets in multiple Availability Zones in the eu-west-2 Region. All the company's customers are in eu-west-2.

However, the company now acquires a new customer in the us-east-I Region. The company creates a new VPC and new subnets in us-east-I. The company establishes

inter-Region VPC peering between the VPCs in the two Regions.

The company wants to give the new customer access to the SaaS service, but the company does not want to immediately deploy new EC2 resources in us-east-I

Which solution will meet these requirements?

Options:

A.

Configure a PrivateLink endpoint service in us-east-I to use the existing NL B that is in eu-west-2. Grant specific AWS accounts access to connect to theSaaS service.

B.

Create an NL B in us-east-I . Create an IP target group that uses the IP addresses of the company's instances in eu-west-2 that host the SaaS service.Configure a PrivateLink endpoint service that uses the NLB that is in us-east-I . Grant specific AWS accounts access to connect to the SaaS service.

C.

Create an Application Load Balancer (ALB) in front of the EC2 instances in eu-west-2. Create an NLB in us-east-I . Associate the NLB that is in us-east-Iwith an ALB target group that uses the ALB that is in eu-west-2. Configure a PrivateLink endpoint service that uses the NLB that is in us-east-I . Grantspecific AWS accounts access to connect to the SaaS service.

D.

Use AWS Resource Access Manager (AWS RAM) to share the EC2 instances that are in eu-west-2. In us-east-I , create an NLB and an instance targetgroup that includes the shared EC2 instances from eu-west-2. Configure a PrivateLink endpoint service that uses the NL B that is in us-east-I. Grant specific AWS accounts access to connect to the SaaS service.

Question 114

A company has implemented an ordering system using an event-driven architecture. During initial testing, the system stopped processing orders. Further log analysis revealed that one order message in an Amazon Simple Queue Service (Amazon SQS) standard queue was causing an error on the backend and blocking all subsequentorder messages The visibility timeout of the queue is set to 30 seconds, and the backend processing timeout is set to 10 seconds. A solutions architect needs to analyze faulty order messages and ensure that the system continues to process subsequent messages.

Which step should the solutions architect take to meet these requirements?

Options:

A.

Increase the backend processing timeout to 30 seconds to match the visibility timeout.

B.

Reduce the visibility timeout of the queue to automatically remove the faulty message.

C.

Configure a new SQS FIFO queue as a dead-letter queue to isolate the faulty messages.

D.

Configure a new SQS standard queue as a dead-letter queue to isolate the faulty messages.

Question 115

A solutions architect is redesigning a three-tier application that a company hosts onpremises. The application provides personalized recommendations based on user profiles. The company already has an AWS account and has configured a VPC to host the application.

The frontend is a Java-based application that runs in on-premises VMs. The company hosts a personalization model on a physical application server and uses TensorFlow to implement the model. The personalization model uses artificial intelligence and machine learning (AI/ML). The company stores user information in a Microsoft SQL Server database. The web application calls the personalization model, which reads the user profiles from the database and provides recommendations.

The company wants to migrate the redesigned application to AWS.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Use AWS Server Migration Service (AWS SMS) to migrate the on-premises physical application server and the web application VMs to AWS. Use AWS Database Migration Service (AWS DMS) to migrate the SQL Server database to Amazon RDS for SQL Server.

B.

Export the personalization model. Store the model artifacts in Amazon S3. Deploy the model to Amazon SageMaker and create an endpoint. Host the Java application in AWS Elastic Beanstalk. Use AWS Database Migration Service {AWS DMS) to migrate the SQL Server database to Amazon RDS for SQL Server.

C.

Use AWS Application Migration Service to migrate the on-premises personalization model and VMs to Amazon EC2 instances in Auto Scaling groups. Use AWS Database Migration Service (AWS DMS) to migrate the SQL Server database to an EC2 instance.

D.

Containerize the personalization model and the Java application. Use Amazon Elastic Kubernetes Service (Amazon EKS) managed node groups to deploy the model and the application to Amazon EKS Host the node groups in a VPC. Use AWS Database Migration Service (AWS DMS) to migrate the SQL Server database to Amazon RDS for SQL Server.

Question 116

During an audit, a security team discovered that a development team was putting IAM user secret access keys in their code and then committing it to an AWS CodeCommit repository. The security team wants to automatically find and remediate instances of this security vulnerability.

Which solution will ensure that the credentials are appropriately secured automatically7

Options:

A.

Run a script nightly using AWS Systems Manager Run Command to search tor credentials on the development instances. If found. use AWS Secrets Manager to rotate the credentials.

B.

Use a scheduled AWS Lambda function to download and scan the application code from CodeCommit. If credentials are found, generate new credentials and store them in AWS KMS.

C.

Configure Amazon Made to scan for credentials in CodeCommit repositories. If credentials are found, trigger an AWS Lambda function to disable the credentials and notify the user.

D.

Configure a CodeCommit trigger to invoke an AWS Lambda function to scan new code submissions for credentials. It credentials are found, disable them in AWS IAM and notify the user

Question 117

A company uses Microsoft Active Directory for user management and Microsoft Entra ID as an identity provider (IdP). The company uses an organization in AWS Organizations to manage multiple AWS accounts. The company establishes an AWS IAM Identity Center instance that is integrated with the IdP and creates the required user groups.

Multiple company departments and applications use Amazon S3. The company uses S3 bucket policies to manage permissions. As a result of the granular permissions the company creates, the policies grow so large that they reach the quota for S3 bucket policy length. The company needs to simplify the process of managing granular S3 bucket permissions for company identities.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create an S3 Access Grant. Associate the S3 Access Grant with the IAM Identity Center instance. Create S3 Access Grants for the user groups based on business requirements by specifying the appropriate S3 bucket. Use the Amazon S3 API to grant the user groups temporary credentials to access the required S3 buckets.

B.

Create an S3 access point for each of the S3 buckets. Create an AWS Lambda function to query data from Amazon S3 based on user permissions. Create an Object Lambda Access Point for the S3 access points. Associate the Lambda function with the Object Lambda Access Point.

C.

Create an S3 access point for each of the S3 buckets. Block public access in the S3 access point settings. Create an access policy based on user requirements. Attach the access policy to the S3 access point. Use the S3 access point to access the S3 bucket.

D.

Group users into appropriate OUs in Organizations. Create SCPs to grant access to specific S3 buckets based on business requirements. Attach the SCPs to the appropriate OUs. Use permission sets in IAM Identity Center to grant access the S3 buckets.

Question 118

A company runs a processing engine in the AWS Cloud The engine processes environmental data from logistics centers to calculate a sustainability index The company has millions of devices in logistics centers that are spread across Europe The devices send information to the processing engine through a RESTful API

The API experiences unpredictable bursts of traffic The company must implement a solution to process all data that the devices send to the processing engine Data loss is unacceptable

Which solution will meet these requirements?

Options:

A.

Create an Application Load Balancer (ALB) for the RESTful API Create an Amazon Simple Queue Service (Amazon SQS) queue Create a listener and a target group for the ALB Add the SQS queue as the target Use a container that runs in Amazon Elastic Container Service (Amazon ECS) with the Fargate launch type to process messages in the queue

B.

Create an Amazon API Gateway HTTP API that implements the RESTful API Create an Amazon Simple Queue Service (Amazon SQS) queue Create an API Gateway service integration with the SQS queue Create an AWS Lambda function toprocess messages in the SQS queue

C.

Create an Amazon API Gateway REST API that implements the RESTful API Create a fleet of Amazon EC2 instances in an Auto Scaling group Create an API Gateway Auto Scaling group proxy integration Use the EC2 instances to process incoming data

D.

Create an Amazon CloudFront distribution for the RESTful API Create a data stream in Amazon Kinesis Data Streams Set the data stream as the origin for the distribution Create an AWS Lambda function to consume and process data in the data stream

Question 119

A financial services company loaded millions of historical stock trades into an Amazon DynamoDB table. The table uses on-demand capacity mode. Once each day at midnight, a few million new records are loaded into the table. Application read activity against the table happens in bursts throughout the day. and a limited set of keys are repeatedly looked up. The company needs to reduce costs associated with DynamoDB.

Which strategy should a solutions architect recommend to meet this requirement?

Options:

A.

Deploy an Amazon ElastiCache cluster in front of the DynamoDB table.

B.

Deploy DynamoDB Accelerator (DAX). Configure DynamoDB auto scaling. Purchase Savings Plans in Cost Explorer

C.

Use provisioned capacity mode. Purchase Savings Plans in Cost Explorer.

D.

Deploy DynamoDB Accelerator (DAX). Use provisioned capacity mode. Configure DynamoDB auto scaling.

Question 120

A company is planning to migrate an on-premises data center to AWS. The company currently hosts the data center on Linux-based VMware VMs. A solutions architect must collect information about network dependencies between the VMs. The information must be in the form of a diagram that details host IP addresses, hostnames, and network connection information.

Which solution will meet these requirements?

Options:

A.

Use AWS Application Discovery Service. Select an AWS Migration Hub home AWS Region. Install the AWS Application Discovery Agent on the on-premises servers for data collection. Grant permissions to Application Discovery Service to use the Migration Hub network diagrams.

B.

Use the AWS Application Discovery Service Agentless Collector for server data collection. Export the network diagrams from the AWS Migration Hub in .png format.

C.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Use AWS Migration Hub data in Workload Discovery on AWS to generate network diagrams.

D.

Install the AWS Application Migration Service agent on the on-premises servers for data collection. Export data from AWS Migration Hub in .csv format into an Amazon CloudWatch dashboard to generate network diagrams.

Question 121

A company has deployed an application on AWS Elastic Beanstalk. The application uses Amazon Aurora for the database layer. An Amazon CloudFront distribution serves web requests and includes the Elastic Beanstalk domain name as the origin server. The distribution is configured with an alternate domain name that visitors use when they access the application.

Each week, the company takes the application out of service for routine maintenance. During the time that the application is unavailable, the company wants visitors to receive an informational message instead of a CloudFront error message.

A solutions architect creates an Amazon S3 bucket as the first step in the process.

Which combination of steps should the solutions architect take next to meet the requirements? (Choose three.)

Options:

A.

Upload static informational content to the S3 bucket.

B.

Create a new CloudFront distribution. Set the S3 bucket as the origin.

C.

Set the S3 bucket as a second origin in the original CloudFront distribution. Configure the distribution and the S3 bucket to use an origin access identity (OAI).

D.

During the weekly maintenance, edit the default cache behavior to use the S3 origin. Revert the change when the maintenance is complete.

E.

During the weekly maintenance, create a cache behavior for the S3 origin on the new distribution. Set the path pattern to \ Set the precedence to 0. Delete the cache behavior when the maintenance is complete.

F.

During the weekly maintenance, configure Elastic Beanstalk to serve traffic from the S3 bucket.

Question 122

A company wants to use AWS IAM Identity Center (AWS Single Sign-On) to manage employee access to AWS services. The company uses AWS Organizations to manage its AWS accounts.

Each employee has their own IAM user. Each IAM user is a member of at least one IAM group. Each IAM group has an attached policy that allows members to assume

specific roles across the accounts. The roles contain appropriate policies for the expected activities of each group of users in each account. All relevant accounts exist inside a single OU.

The company has already created new users and groups in IAM Identity Center to match the permissions that exist in IAM.

How should the company use IAM Identity Center to implement the existing permissions?

Options:

A.

For each group, create policies in each account. Give the policies the same name in each account. Create a new permission set. Add the name of the newpolicies to the permission set. Assign user access to the AWS accounts in IAM Identity Center.

B.

For each group, create a new permission set. Attach the relevant existing IAM roles in each account to the permission set. Create a new customer managedpolicy that allows the group to assume the roles. Assign user access to the AWS accounts in IAM Identity Center.

C.

For each group, create a new permission set. Create policies in each account. Give each policy a unique name. Set the path of each policy to match thename of the permission set. Assign user access to the AWS accounts in IAM Identity Center.

D.

Add the OU to the accounts configuration in IAM Identity Center. For each group, create policies in each account. Create a new permission set. Add the newpolicies to the permission set as customer managed policies. Attach each new policy to the correct account in the account configuration in IAM IdentityCenter.

Question 123

A company has AWS accounts that are in an organization in AWS rganizations. The company wants to track Amazon EC2 usage as a metric.

The company's architecture team must receive a daily alert if the EC2 usage is more than 10% higher than the average EC2 usage from the last 30 days.

Which solution will meet these requirements?

Options:

A.

Configure AWS Budgets in the organization's management account. Specify a usage type of EC2 running hours. Specify a daily period. Set the budget amount to be 10% more than the reported average usage for the last 30 days from AWS Cost Explorer.

B.

Configure an alert to notify the architecture team if the usage threshold is met. Configure AWS Cost Anomaly Detection in the organization's management account. Configure a monitor type of AWS Service. Apply a filter of Amazon EC2. Configure an alert subscription to notify the architecture team if the usage is 10% more than the average usage for the last 30 days.

C.

Enable AWS Trusted Advisor in the organization's management account. Configure a cost optimization advisory alert to notify the architecture team if the EC2 usage is 10% more than the reported average usage for the last 30 days.

D.

Configure Amazon Detective in the organization's management account. Configure an EC2 usage anomaly alert to notify the architecture team if Detective identifies a usage anomaly of more than 10%.

Question 124

A company is hosting a monolithic REST-based API for a mobile app on five Amazon EC2 instances in public subnets of a VPC. Mobile clients connect to the API by using a domain name that is hosted on Amazon Route 53. The company has created a Route 53 multivalue answer routing policy with the IP addresses of all the EC2 instances. Recently, the app has been overwhelmed by large and sudden increases to traffic. The app has not been able to keep up with the traffic.

A solutions architect needs to implement a solution so that the app can handle the new and varying load.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Separate the API into individual AWS Lambda functions. Configure an Amazon API Gateway REST API with Lambda integration for the backend. Update the Route 53 record to point to the API Gateway API.

B.

Containerize the API logic. Create an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. Run the containers in the cluster by using Amazon EC2. Create a Kubernetes ingress. Update the Route 53 record to point to the Kubernetes ingress.

C.

Create an Auto Scaling group. Place all the EC2 instances in the Auto Scaling group. Configure the Auto Scaling group to perform scaling actions that are based on CPU utilization. Create an AWS Lambda function that reacts to Auto Scaling group changes and updates the Route 53 record.

D.

Create an Application Load Balancer (ALB) in front of the API. Move the EC2 instances to private subnets in the VPC. Add the EC2 instances as targets for the ALB. Update the Route 53 record to point to the ALB.

Question 125

A company is migrating to the cloud. It wants to evaluate the configurations of virtual machines in its existing data center environment to ensure that it can size new Amazon EC2 instances accurately. The company wants to collect metrics, such as CPU. memory, and disk utilization, and it needs an inventory of what processes are running on each instance. The company would also like to monitor network connections to map communications between servers.

Which would enable the collection of this data MOST cost effectively?

Options:

A.

Use AWS Application Discovery Service and deploy the data collection agent to each virtual machine in the data center.

B.

Configure the Amazon CloudWatch agent on all servers within the local environment and publish metrics to Amazon CloudWatch Logs.

C.

Use AWS Application Discovery Service and enable agentless discovery in the existing visualization environment.

D.

Enable AWS Application Discovery Service in the AWS Management Console and configure the corporate firewall to allow scans over a VPN.

Question 126

A North American company with headquarters on the East Coast is deploying a new web application running on Amazon EC2 in the us-east-1 Region. The application should dynamically scale to meet user demand and maintain resiliency. Additionally, the application must have disaster recover capabilities in an active-passive configuration with the us-west-1 Region.

Which steps should a solutions architect take after creating a VPC in the us-east-1 Region?

Options:

A.

Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs in each Region as part of an Auto Scaling group spanning both VPCs and served by the ALB.

B.

Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create an Amazon Route 53 record set with a failover routing policy and health checks enabled to provide high availability across both Regions.

C.

Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) that spans both VPCs. Deploy EC2 instances across multiple Availability Zones as part of an Auto Scaling group in each VPC served by the ALB. Create an Amazon Route 53 record that points to the ALB.

D.

Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create separate Amazon Route 53 records in each Region that point to the ALB in the Region. Use Route 53 health checks to provide high availability across both Regions.

Question 127

A company is planning to migrate workloads from its on-premises data center to Amazon EC2 instances. The workloads run on physical servers and VMware virtual servers. The company has gathered details about each on-premises server and virtual server, including server specification, CPU utilization, and memory utilization. The company has stored these details in a .csv file named onprem.csv.

Before the migration, the company must estimate the cost of running the servers on AWS and must determine recommended EC2 instance types for the servers. The company must export this information to a different .csv file.

Which solution will meet these requirements?

Options:

A.

Configure AWS Compute Optimizer to generate recommendations from an external source. Import the onprem.csv file. Export the Compute Optimizer recommendations to a new .csv file.

B.

Import the onprem.csv file into AWS Migration Hub by using AWS Migration Hub import. Use EC2 instance recommendations from Migration Hub to generate recommendations. Export the recommendations to a new .csv file.

C.

Deploy AWS Application Discovery Service Agentless Collector on premises. Use Agentless Collector to import the onprem.csv file. Send the file to AWS Migration Hub. Use EC2 instance recommendations from Migration Hub to generate recommendations. Export the recommendations to a new .csv file.

D.

Upload the onprem.csv file to an Amazon S3 bucket. Configure Migration Evaluator to import the data from the S3 bucket. Generate and confirm recommendations by using Migration Evaluator Quick Insights. Export the final recommendations to a new .csv file in the S3 bucket.

Question 128

A company is running a two-tier web-based application in an on-premises data center. The application layer consists of a single server running a stateful application. The application connects to a PostgreSQL database running on a separate server. The application’s user base is expected to grow significantly, so the company is migrating the application and database to AWS. The solution will use Amazon Aurora PostgreSQL, Amazon EC2 Auto Scaling, and Elastic Load Balancing.

Which solution will provide a consistent user experience that will allow the application and database tiers to scale?

Options:

A.

Enable Aurora Auto Scaling for Aurora Replicas. Use a Network Load Balancer with the least outstanding requests routing algorithm and sticky sessions enabled.

B.

Enable Aurora Auto Scaling for Aurora writers. Use an Application Load Balancer with the round robin routing algorithm and sticky sessions enabled.

C.

Enable Aurora Auto Scaling for Aurora Replicas. Use an Application Load Balancer with the round robin routing and sticky sessions enabled.

D.

Enable Aurora Scaling for Aurora writers. Use a Network Load Balancer with the least outstanding requests routing algorithm and sticky sessions enabled.

Question 129

A company wants to change its internal cloud billing strategy for each of its business units. Currently, the cloud governance team shares reports for overall cloud spending with the head of each business unit. The company uses AWS Organizations lo manage the separate AWS accounts for each business unit. The existing tagging standard in Organizations includes the application, environment, and owner. The cloud governance team wants a centralized solution so each business unit receives monthly reports on its cloud spending. The solution should also send notifications for any cloud spending that exceeds a set threshold.

Which solution is the MOST cost-effective way to meet these requirements?

Options:

A.

Configure AWS Budgets in each account and configure budget alerts that are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use Cost Explorer in each account to create monthly reports for each business unit.

B.

Configure AWS Budgets in the organization's master account and configure budget alerts that are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use Cost Explorer in the organization's master account to create monthly reports for each business unit.

C.

Configure AWS Budgets in each account and configure budget alerts lhat are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use the AWS Billing and Cost Management dashboard in each account to create monthly reports for each business unit.

D.

Enable AWS Cost and Usage Reports in the organization's master account and configure reports grouped by application, environment, and owner. Create an AWS Lambda function that processes AWS Cost and Usage Reports, sends budget alerts, and sends monthly reports to each business unit's email list.

Question 130

A team collects and routes behavioral data for an entire company The company runs a Multi-AZ VPC environment with public subnets, private subnets, and in internet gateway Each public subnet also contains a NAT gateway Most of the company's applications read from and write to Amazon Kinesis Data Streams. Most of the workloads am in private subnets.

A solutions architect must review the infrastructure The solutions architect needs to reduce costs and maintain the function of the applications The solutions architect uses Cost Explorer and notices that the cost in the EC2-Other category is consistently high A further review shows that NatGateway-Bytes charges are increasing the cost in the EC2-Other category.

What should the solutions architect do to meet these requirements?

Options:

A.

Enable VPC Flow Logs. Use Amazon Athena to analyze the logs for traffic that can be removed. Ensure that security groups are Mocking traffic that is responsible for high costs.

B.

Add an interface VPC endpoint for Kinesis Data Streams to the VPC. Ensure that applications have the correct IAM permissions to use the interface VPC endpoint.

C.

Enable VPC Flow Logs and Amazon Detective Review Detective findings for traffic that is not related to Kinesis Data Streams Configure security groups to block that traffic

D.

Add an interface VPC endpoint for Kinesis Data Streams to the VPC. Ensure that the VPC endpoint policy allows traffic from the applications.

Question 131

A company needs to implement a disaster recovery (DR) plan for a web application. The application runs in a single AWS Region.

The application uses microservices that run in containers. The containers are hosted on AWS Fargate in Amazon Elastic Container Service (Amazon ECS). The application has an Amazon RDS for MYSQL DB instance as its data layer and uses Amazon Route 53 for DNS resolution. An Amazon CloudWatch alarm invokes an

Amazon EventBridge rule if the application experiences a failure.

A solutions architect must design a DR solution to provide application recovery to a separate Region. The solution must minimize the time that is necessary to recover

from a failure.

Which solution will meet these requirements?

Options:

A.

Set up a second ECS cluster and ECS service on Fargate in the separate Region. Create an AWS Lambda function to perform the following actions: take asnapshot of the ROS DB instance. copy the snapshot to the separate Region. create a new RDS DB instance frorn the snapshot, and update Route 53 toroute traffic to the second ECS cluster. Update the EventBridge rule to add a target that will invoke the Lambda function.

B.

Create an AWS Lambda function that creates a second ECS cluster and ECS service in the separate Region. Configure the Lambda function to perform thefollowing actions: take a snapshot of thQRDS DB instance, copy the snapshot to the separate Region. create a new RDS DB instance from the snapshot.and update Route 53 to route traffic to the second ECS cluster. Update the EventBridge rule to add a target that will invoke the Lambda function.

C.

Set up a second ECS cluster and ECS service on Fargate in the separate Region. Create a cross-Region read replica of the RDS DB instance in theseparate Region. Create an AWS Lambda function to prornote the read replica to the primary database. Configure the Lambda function to update Route 53to route traffic to the second ECS cluster. Update the EventBridge rule to add a target that will invoke the Lambda function.

D.

Set up a second ECS cluster and ECS service on Fargate in the separate Region. Take a snapshot of the ROS DB instance. Convert the snapshot to anAmazon DynamoDB global table. Create an AWS Lambda function to update Route 53 to route traffic to the second ECS cluster Update the EventBridgerule to add a target that will invoke the Lambda function.

Question 132

An online magazine will launch its latest edition this month. This edition will be the first to be distributed globally. The magazine's dynamic website currently uses an Application Load Balancer in front of the web tier, a fleet of Amazon EC2 instances for web and application servers, and Amazon Aurora MySQL. Portions of the website include static content and almost all traffic is read-only.

The magazine is expecting a significant spike in internet traffic when the new edition is launched. Optimal performance is a top priority for the week following the launch.

Which combination of steps should a solutions architect take to reduce system response times for a global audience? (Choose two.)

Options:

A.

Use logical cross-Region replication to replicate the Aurora MySQL database to a secondary Region. Replace the web servers with Amazon S3. Deploy S3 buckets in cross-Region replication mode.

B.

Ensure the web and application tiers are each in Auto Scaling groups. Introduce an AWS Direct Connect connection. Deploy the web and application tiers in Regions across the world.

C.

Migrate the database from Amazon Aurora to Amazon RDS for MySQL. Ensure all three of the application tiersג€" web, application, and databaseג€" are in private subnets.

D.

Use an Aurora global database for physical cross-Region replication. Use Amazon S3 with cross-Region replication for static content and resources. Deploy the web and application tiers in Regions across the world.

E.

Introduce Amazon Route 53 with latency-based routing and Amazon CloudFront distributions. Ensure the web and application tiers are each in Auto Scaling groups.

Question 133

A company wants to use AWS to create a business continuity solution in case the company's main on-premises application fails. The application runs on physical servers that also run other applications. The on-premises application that the company is planning to migrate uses a MySQL database as a data store. All the company's on-premises applications use operating systems that are compatible with Amazon EC2.

Which solution will achieve the company's goal with the LEAST operational overhead?

Options:

A.

Install the AWS Replication Agent on the source servers, including the MySQL servers. Set up replication for all servers. Launch test instances for regular drills. Cut over to the test instances to fail over the workload in the case of a failure event.

B.

Install the AWS Replication Agent on the source servers, including the MySQL servers. Initialize AWS Elastic Disaster Recovery in the target AWS Region. Define the launch settings. Frequently perform failover and fallback from the most recent point in time.

C.

Create AWS Database Migration Service (AWS DMS) replication servers and a target Amazon Aurora MySQL DB cluster to host the database. Create a DMS replication task to copy the existing data to the target DB cluster. Create a local AWS Schema Conversion Tool (AWS SCT) change data capture (CDC) task to keep the data synchronized. Install the rest of the software on EC2 instances by starting with a compatible base AMI.

D.

Deploy an AWS Storage Gateway Volume Gateway on premises. Mount volumes on all on-premises servers. Install the application and the MySQL database on the new volumes. Take regular snapshots. Install all the software on EC2 Instances by starting with a compatible base AMI. Launch a Volume Gateway on an EC2 instance. Restore the volumes from the latest snapshot. Mount the new volumes on the EC2 instances in the case of a failure event.

Question 134

A company is running an application in the AWS Cloud. The application consists of microservices that run on a fleet of Amazon EC2 instances in multiple Availability Zones behind an Application Load Balancer. The company recently added a new REST API that was implemented in Amazon API Gateway. Some of the older microservices that run on EC2 instances need to call this new API.

The company does not want the API to be accessible from the public internet and does not want proprietary data to traverse the public internet

What should a solutions architect do to meet these requirements?

Options:

A.

Create an AWS Site-to-Site VPN connection between the VPC and the API Gateway. Use API Gateway to generate a unique API key for each microservice. Configure the API methods to require the key.

B.

Create an interface VPC endpoint for API Gateway, and set an endpoint policy to only allow access to the specific API Add a resource policy to API Gateway to only allow access from the VPC endpoint. Change the API Gateway endpoint type to private.

C.

Modify the API Gateway to use 1AM authentication. Update the 1AM policy for the 1AM role that is assigned to the EC2 Instances to allow access to the API Gateway. Move the API Gateway into a new VPC Deploy a transit gateway and connect the VPCs.

D.

Create an accelerator in AWS Global Accelerator, and connect the accelerator to the API Gateway. Update the route table for all VPC subnets with a route to the created Global Accelerator endpoint IP address. Add an API key for each service to use for authentication.

Question 135

A utility company collects usage data from smart meters every 5 minutes. Data is sent to API Gateway, processed by Lambda, and stored in DynamoDB. As usage increased, Lambda durations increased and DynamoDB PUTs failed with ProvisionedThroughputExceededException. Lambda also experiences TooManyRequestsException errors.

Which combination of changes will resolve these issues? (Select TWO.)

Options:

A.

Increase the write capacity units to the DynamoDB table.

B.

Increase the memory available to the Lambda functions.

C.

Increase the payload size from the smart meters.

D.

Stream the data into an Amazon Kinesis data stream from API Gateway and process the data in batches.

E.

Collect data in an Amazon SQS FIFO queue, which triggers a Lambda function to process each message.

Question 136

A company uses an on-premises data analytics platform. The system is highly available in a fully redundant configuration across 12 servers in the company's data center.

The system runs scheduled jobs, both hourly and daily, in addition to one-time requests from users.Scheduled jobs can take between 20 minutes and 2 hours to finish running and have tight SLAs. The scheduled jobs account for 65% of the system usage. User jobs typically finish running in less than 5 minutes and have no SLA. The user jobs account for 35% of system usage. During system failures, scheduled jobs must continue to meet SLAs. However, user jobs can be delayed.

A solutions architect needs to move the system to Amazon EC2 instances and adopt a consumption-based model to reduce costs with no long-term commitments. The solution must maintain high availability and must not affect the SLAs.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Split the 12 instances across two Availability Zones in the chosen AWS Region. Run two instances in each Availability Zone as On-Demand Instances with Capacity Reservations. Run four instances in each Availability Zone as Spot Instances.

B.

Split the 12 instances across three Availability Zones in the chosen AWS Region. In one of the Availability Zones, run all four instances as On-Demand Instances with Capacity Reservations. Run the remaining instances as Spot Instances.

C.

Split the 12 instances across three Availability Zones in the chosen AWS Region. Run two instances in each Availability Zone as On-Demand Instances with a Savings Plan. Run two instances in each Availability Zone as Spot Instances.

D.

Split the 12 instances across three Availability Zones in the chosen AWS Region. Run three instances in each Availability Zone as On-Demand Instances with Capacity Reservations. Run one instance in each Availability Zone as a Spot Instance.

Question 137

A company hosts a blog post application on AWS using Amazon API Gateway, Amazon DynamoDB, and AWS Lambda. The application currently does not use

API keys to authorize requests. The API model is as follows:

GET/posts/[postid] to get post details

GET/users[userid] to get user details

GET/comments/[commentid] to get comments details

The company has noticed users are actively discussing topics in the comments section, and the company wants to increase user engagement by marking the comments appears in real time.

Which design should be used to reduce comment latency and improve user experience?

Options:

A.

Use edge-optimized API with Amazon CloudFront to cache API responses.

B.

Modify the blog application code to request GET comment[commented] every 10 seconds.

C.

Use AWS AppSync and leverage WebSockets to deliver comments.

D.

Change the concurrency limit of the Lambda functions to lower the API response time.

Question 138

A financial company is planning to migrate its web application from on premises to AWS. The company uses a third-party security tool to monitor the inbound traffic to the application. The company has used the security tool for the last 15 years, and the tool has no cloud solutions available from its vendor. The company's security team is concerned about how to integrate the security tool with AWS technology.

The company plans to deploy the application migration to AWS on Amazon EC2 instances. The EC2 instances will run in an Auto Scaling group in a dedicated VPC. The company needs to use the security tool to inspect all packets that come in and out of the VPC. This inspection must occur in real time and must not affect the application's performance. A solutions architect must design a target architecture on AWS that is highly available within an AWS Region.

Which combination of steps should the solutions architect take to meet these requirements? (Select TWO.)

Options:

A.

Deploy the security tool on EC2 instances in a new Auto Scaling group in the existing VPC.

B.

Deploy the web application behind a Network Load Balancer.

C.

Deploy an Application Load Balancer in front of the security tool instances.

D.

Provision a Gateway Load Balancer for each Availability Zone to redirect the traffic to the security tool.

E.

Provision a transit gateway to facilitate communication between VPCs.

Question 139

A company manages multiple AWS accounts by using AWS Organizations. Under the root OU. the company has two OUs: Research and DataOps.

Because of regulatory requirements, all resources that the company deploys in the organizationmust reside in the ap-northeast-1 Region. Additionally. EC2 instances that the company deploys in the DataOps OU must use a predefined list of instance types

A solutions architect must implement a solution that applies these restrictions. The solution must maximize operational efficiency and must minimize ongoing maintenance

Which combination of steps will meet these requirements? (Select TWO )

Options:

A.

Create an IAM role in one account under the DataOps OU Use the ec2 Instance Type condition key in an inline policy on the role to restrict access to specific instance types.

B.

Create an IAM user in all accounts under the root OU Use the aws RequestedRegion condition key in an inline policy on each user to restrict access to all AWS Regions except ap-northeast-1.

C.

Create an SCP Use the aws:RequestedRegion condition key to restrict access to all AWS Regions except ap-northeast-1 Apply the SCP to the root OU.

D.

Create an SCP Use the ec2Reo»on condition key to restrict access to all AWS Regions except ap-northeast-1. Apply the SCP to the root OU. the DataOps OU. and the Research OU.

E.

Create an SCP Use the ec2:lnstanceType condition key to restrict access to specific instance types Apply the SCP to the DataOps OU.

Question 140

A company uses AWS Organizations to manage its development environment. Each development team at the company has its own AWS account Each account has a single VPC and CIDR blocks that do not overlap.

The company has an Amazon Aurora DB cluster in a shared services account All the development teams need to work with live data from the DB cluster

Which solution will provide the required connectivity to the DB cluster with the LEAST operational overhead?

Options:

A.

Create an AWS Resource Access Manager (AWS RAM) resource share tor the DB cluster. Share the DB cluster with all the development accounts

B.

Create a transit gateway in the shared services account Create an AWS Resource Access Manager (AWS RAM) resource share for the transit gateway Share the transit gateway with all the development accounts Instruct the developers to accept the resource share Configure networking.

C.

Create an Application Load Balancer (ALB) that points to the IP address of the DB cluster Create an AWS PrivateLink endpoint service that uses the ALB Add permissions to allow each development account to connect to the endpoint service

D.

Create an AWS Site-to-Site VPN connection in the shared services account Configure networking Use AWS Marketplace VPN software in each development account to connect to the Site-to-Site VPN connection

Question 141

A company uses AWS Organizations to manage its AWS accounts. The company needs a list of all its Amazon EC2 instances that have underutilized CPU or memory usage. The company also needs recommendations for how to downsize these underutilized instances.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Install a CPU and memory monitoring tool from AWS Marketplace on all the EC2 Instances. Store the findings in Amazon S3. Implement a Python script to identify underutilized instances. Reference EC2 instance pricing information for recommendations about downsizing options.

B.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager. Retrieve the resource op! nization recommendations from AWS Cost Explorer in the organization's management account. Use the recommendations to downsize underutilized instances in all accounts of the organization.

C.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager. Retrieve the resource optimization recommendations from AWS Cost Explorer in each account of the organization. Use the recommendations to downsize underutilized instances in all accounts of the organization.

D.

Install the Amazon CloudWatch agent on all the EC2 instances by using AWS Systems Manager Create an AWS Lambda function to extract CPU and memory usage from all the EC2 instances. Store the findings as files in Amazon S3. Use Amazon Athena to find underutilized instances. Reference EC2 instance pricing information for recommendations about downsizing options.

Question 142

A company runs a website on Amazon ECS containers that use the AWS Fargate launch type. The company configures AWS Application Auto Scaling by using a target tracking scaling policy. The company sets the request count as the scaling metric. An Application Load Balancer (ALB) serves traffic to the ECS containers. The website serves images on request and resizes the images to a predefined size to match the viewers' screens. After the website resizes an image, the website caches the image locally in a container and serves subsequent requests from the cache.

During periods of high traffic, the company observed that images load slowly and with high latency. The company wants to minimize the latency to serve images.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create a new Amazon CloudFront distribution and an Amazon S3 bucket. Set the ALB as one origin for the distribution and the S3 bucket as a second origin. Configure a cache behavior that routes image requests to the S3 origin, and configure a default cache behavior for the ALB origin. Pre-scale all images and upload the images to the S3 bucket.

B.

Create an Amazon ElastiCache (Memcached) cluster. Update the application to read and write the resized images to the ElastiCache (Memcached) cluster by using the image name and size as the key.

C.

Create an Amazon Aurora cluster and an Amazon S3 bucket. Update the application to store resized images in the S3 bucket and to store a cache key in the Aurora cluster. Configure the application to load the cache key from the Aurora cluster and to serve images from the S3 bucket.

D.

Create an Amazon API Gateway HTTP API and enable API request caching. Replace the ALB with the HTTP API and remove the local caching in the application code.

Question 143

A solutions architect has developed a web application that uses an Amazon API Gateway Regional endpoint and an AWS Lambda function. The consumers of the web application are all close to the AWS Region where the application will be deployed. The Lambda function only queries an Amazon Aurora MySQL database. The solutions architect has configured the database to have three read replicas.

During testing, the application does not meet performance requirements. Under high load, the application opens a large number of database connections. The solutions architect must improve the application's performance.

Which actions should the solutions architect take to meet these requirements? (Choose two.)

Options:

A.

Use the cluster endpoint of the Aurora database.

B.

Use RDS Proxy to set up a connection pool to the reader endpoint of the Aurora database.

C.

Use the Lambda Provisioned Concurrency feature.

D.

Move the code for opening the database connection in the Lambda function outside of the event handler.

E.

Change the API Gateway endpoint to an edge-optimized endpoint.

Question 144

A solutions architect needs to improve an application that is hosted in the AWS Cloud. The application uses an Amazon Aurora MySQL DB instance that is experiencing overloaded connections. Most of the application's operations insert records into the database. The application currently stores credentials in a text-based configuration file.

The solutions architect needs to implement a solution so that the application can handle the current connection load. The solution must keep the credentials secure and must provide the ability to rotatethe credentials automatically on a regular basis.

Which solution will meet these requirements?

Options:

A.

Deploy an Amazon RDS Proxy layer in front of the DB instance. Store the connection credentials as a secret in AWS Secrets Manager.

B.

Deploy an Amazon RDS Proxy layer in front of the DB instance. Store the connection credentials in AWS Systems Manager Parameter Store.

C.

Create an Aurora Replica. Store the connection credentials as a secret in AWS Secrets Manager.

D.

Create an Aurora Replica. Store the connection credentials in AWS Systems Manager Parameter Store.

Question 145

A company has hundreds of AWS accounts. The company uses an organization in AWS Organizations to manage all the accounts. The company has turned on all features.

A finance team has allocated a daily budget for AWS costs. The finance team must receive an email notification if the organization's AWS costs exceed 80% of the allocated budget. A solutions architect needs to implement a solution to track the costs and deliver the notifications.

Which solution will meet these requirements?

Options:

A.

In the organization's management account, use AWS Budgets to create a budget that has a daily period. Add an alert threshold and set the value to 80%. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

B.

In the organization’s management account, set up the organizational view feature for AWS Trusted Advisor. Create an organizational view report for cost optimization.Set an alert threshold of 80%. Configure notification preferences. Add the email addresses of the finance team.

C.

Register the organization with AWS Control Tower. Activate the optional cost control (guardrail). Set a control (guardrail) parameter of 80%. Configure control (guardrail) notification preferences. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

D.

Configure the member accounts to save a daily AWS Cost and Usage Report to an Amazon S3 bucket in the organization's management account. Use Amazon EventBridge to schedule a daily Amazon Athena query to calculate the organization’s costs. Configure Athena to send an Amazon CloudWatch alert if the total costs are more than 80% of the allocated budget. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

Question 146

Question:

A solutions architect is importing a VM from an on-premises environment by using the Amazon EC2 VM Import feature. The imported instance has a public IP and runs in a public subnet in a VPC. However, the instance doesnot appearin the AWS Systems Manager (SSM) console as a managed instance.

Which combination of steps should the architect take to resolve the issue? (Select TWO.)

Options:

A.

Verify that Systems Manager Agent is installed on the instance and is running.

B.

Verify that the instance is assigned an appropriate IAM role for Systems Manager.

C.

Verify the existence of a VPC endpoint on the VPC.

D.

Verify that the AWS Application Discovery Agent is configured.

E.

Verify the correct configuration of service-linked roles for Systems Manager.

Question 147

A company is building an electronic document management system in which users upload their documents. The application stack is entirely serverless and runs on AWS in the eu-central-1 Region. The system includes a web application that uses an Amazon CloudFront distribution for delivery with Amazon S3 as the origin. The web application communicates with Amazon API Gateway Regional endpoints. The API Gateway APIs call AWS Lambda functions that store metadata in an Amazon Aurora Serverless database and put the documents into an S3 bucket.

The company is growing steadily and has completed a proof of concept with its largest customer. The company must improve latency outside of Europe.

Which combination of actions will meet these requirements? (Select TWO.)

Options:

A.

Enable S3 Transfer Acceleration on the S3 bucket. Ensure that the web application uses the Transfer Acceleration signed URLs.

B.

Create an accelerator in AWS Global Accelerator. Attach the accelerator to the CloudFront distribution.

C.

Change the API Gateway Regional endpoints to edge-optimized endpoints.

D.

Provision the entire stack in two other locations that are spread across the world. Use global databases on the Aurora Serverless cluster.

E.

Add an Amazon RDS proxy between the Lambda functions and the Aurora Serverless database.

Question 148

A company uses a Grafana data visualization solution that runs on a single Amazon EC2 instance to monitor the health of the company's AWS workloads. The company has invested time and effort to create dashboards that the company wants to preserve. The dashboards need to be highly available and cannot be down for longer than 10 minutes. The company needs to minimize ongoing maintenance.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Migrate to Amazon CloudWatch dashboards. Recreate the dashboards to match the existing Grafana dashboards. Use automatic dashboards where possible.

B.

Create an Amazon Managed Grafana workspace. Configure a new Amazon CloudWatch data source. Export dashboards from the existing Grafana instance. Import the dashboards into the new workspace.

C.

Create an AMI that has Grafana pre-installed. Store the existing dashboards in Amazon Elastic File System (Amazon EFS). Create an Auto Scaling group that uses the new AMI. Set the Auto Scaling group's minimum, desired, and maximum number of instances to one. Create an Application Load Balancer that serves at least two Availability Zones.

D.

Configure AWS Backup to back up the EC2 instance that runs Grafana once each hour. Restore the EC2 instance from the most recent snapshot in an alternate Availability Zone when required.

Question 149

A company has a critical application in which the data tier is deployed in a single AWS Region. The data tier uses an Amazon DynamoDB table and an Amazon Aurora MySQL DB cluster. The current Aurora MySQL engine version supports a global database. The application tier is already deployed in two Regions.

Company policy states that critical applications must have application tier components and data tier components deployed across two Regions. The RTO and RPO must be no more than a few minutes each. A solutions architect must recommend a solution to make the data tier compliant with company policy.

Which combination of steps will meet these requirements? (Choose two.)

Options:

A.

Add another Region to the Aurora MySQL DB cluster

B.

Add another Region to each table in the Aurora MySQL DB cluster

C.

Set up scheduled cross-Region backups for the DynamoDB table and the Aurora MySQL DB cluster

D.

Convert the existing DynamoDB table to a global table by adding another Region to its configuration

E.

Use Amazon Route 53 Application Recovery Controller to automate database backup and recovery to the secondary Region

Question 150

A solutions architect is preparing to deploy a new security tool into several previously unused AWS Regions. The solutions architect will deploy the tool by using an AWS CloudFormation stack set. The stack set's template contains an 1AM role that has a custom name. Upon creation of the stack set. no stack instances are created successfully.

What should the solutions architect do to deploy the stacks successfully?

Options:

A.

Enable the new Regions in all relevant accounts. Specify the CAPABILITY_NAMED_IAM capability during the creation of the stack set.

B.

Use the Service Quotas console to request a quota increase for the number of CloudFormation stacks in each new Region in all relevant accounts. Specify the CAPABILITYJAM capability during the creation of the stack set.

C.

Specify the CAPABILITY_NAMED_IAM capability and the SELF_MANAGED permissions model during the creation of the stack set.

D.

Specify an administration role ARN and the CAPABILITYJAM capability during the creation of the stack set.

Question 151

A research center is migrating to the AWS Cloud and has moved its on-premises 1 PB object storage to an Amazon S3 bucket. One hundred scientists are using this object storage to store their work-related documents. Each scientist has a personal folder on the object store. All the scientists are members of a single IAMuser group.

The research center's compliance officer is worried that scientists will be able to access each other's work. The research center has a strict obligation to report on which scientist accesses which documents.

The team that is responsible for these reports has little AWS experience and wants a ready-to-use solution that minimizes operational overhead.

Which combination of actions should a solutions architect take to meet these requirements? (Select TWO.)

Options:

A.

Create an identity policy that grants the user read and write access. Add a condition that specifies that the S3 paths must be prefixed with ${aws:username}. Apply the policy on the scientists' IAM user group.

B.

Configure a trail with AWS CloudTrail to capture all object-level events in the S3 bucket. Store the trail output in another S3 bucket. Use Amazon Athena to query the logs and generate reports.

C.

Enable S3 server access logging. Configure another S3 bucket as the target for log delivery. Use Amazon Athena to query the logs and generate reports.

D.

Create an S3 bucket policy that grants read and write access to users in the scientists' IAM user group.

E.

Configure a trail with AWS CloudTrail to capture all object-level events in the S3 bucket and write the events to Amazon CloudWatch. Use the Amazon Athena CloudWatch connector to query the logs and generate reports.

Question 152

A company needs to optimize the cost of its application on AWS. The application uses AWS Lambda functions and Amazon ECS containers that run on AWS Fargate. The application is write-heavy and stores data in an Amazon Aurora MySQL database.

The load on the application is not consistent. The application experiences long periods of no usage, followed by sudden and significant increases and decreases in traffic. The database runs on a memory optimized DB instance and has high utilization during peak times. A solutions architect must design a solution that can scale to handle the changes in traffic.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Add additional read replicas to the database. Purchase Instance Savings Plans and reserved DB instances for Aurora.

B.

Migrate the database to an Aurora DB cluster that has multiple writer instances. Purchase Instance Savings Plans.

C.

Migrate the database to an Aurora global database. Purchase Compute Savings Plans and reserved DB instances for Aurora.

D.

Migrate the database to Aurora Serverless v2. Purchase Compute Savings Plans.

Question 153

A company hosts a Git repository in an on-premises data center. The company uses webhooks to invoke functionality that runs in the AWS Cloud. The company hosts the webhook logic on a set of Amazon EC2 instances in an Auto Scaling group that the company set as a target for an Application Load Balancer (ALB). The Git server calls the ALB for the configured webhooks. The company wants to move the solution to a serverless architecture.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

For each webhook, create and configure an AWS Lambda function URL. Update the Git servers to call the individual Lambda function URLs.

B.

Create an Amazon API Gateway HTTP API. Implement each webhook logic in a separate AWS Lambda function. Update the Git servers to call the API Gateway endpoint.

C.

Deploy the webhook logic to AWS App Runner. Create an ALB, and set App Runner as the target. Update the Git servers to call the ALB endpoint.

D.

Containerize the webhook logic. Create an Amazon Elastic Container Service (Amazon ECS) cluster, and run the webhook logic in AWS Fargate. Create an Amazon API Gateway REST API, and set Fargate as the target. Update the Git servers to call the API Gateway endpoint.

Question 154

A company is expanding. The company plans to separate its resources into hundreds of different AWS accounts in multiple AWS Regions. A solutions architect must recommend a solution that denies access to any operations outside of specifically designated Regions.

Which solution will meet these requirements?

Options:

A.

Create IAM roles for each account. Create IAM policies with conditional allow permissions that include only approved Regions for the accounts.

B.

Create an organization in AWS Organizations. Create IAM users for each account. Attach a policy to each user to block access to Regions where an account cannot deploy infrastructure.

C.

Launch an AWS Control Tower landing zone. Create OUs and attach SCPs that deny access to run services outside of the approved Regions.

D.

Enable AWS Security Hub in each account. Create controls to specify the Regions where an account can deploy infrastructure.

Question 155

A manufacturing company is building an inspection solution for its factory. The company has IPcameras at the end of each assembly line. The company has used Amazon SageMaker to train a machine learning (ML) model to identify common defects from still images.

The company wants to provide local feedback to factory workers when a defect is detected. The company must be able to provide this feedback even if the factory’s internet connectivity is down. The company has a local Linux server that hosts an API that provides local feedback to the workers.

How should the company deploy the ML model to meet these requirements?

Options:

A.

Set up an Amazon Kinesis video stream from each IP camera to AWS. Use Amazon EC2 instances to take still images of the streams. Upload the images to an Amazon S3 bucket. Deploy a SageMaker endpoint with the ML model. Invoke an AWS Lambda function to call the inference endpoint when new images are uploaded. Configure the Lambda function to call the local API when a defect is detected.

B.

Deploy AWS IoT Greengrass on the local server. Deploy the ML model to the Greengrass server. Create a Greengrass component to take still images from the cameras and run inference. Configure the component to call the local API when a defect is detected.

C.

Order an AWS Snowball device. Deploy a SageMaker endpoint the ML model and an Amazon EC2 instance on the Snowball device. Take still images from the cameras. Run inference from the EC2 instance. Configure the instance to call the local API when a defect is detected.

D.

Deploy Amazon Monitron devices on each IP camera. Deploy an Amazon Monitron Gateway on premises. Deploy the ML model to the Amazon Monitron devices. Use Amazon Monitron health state alarms to call the local API from an AWS Lambda function when a defect is detected.

Question 156

A company is storing data on premises on a Windows file server. The company produces 5 GB of new data daily.

The company migrated part of its Windows-based workload to AWS and needs the data to be available on a file system in the cloud. The company already has established an AWS Direct Connect connection between the on-premises network and AWS.

Which data migration strategy should the company use?

Options:

A.

Use the file gateway option in AWS Storage Gateway to replace the existing Windows file server, and point the existing file share to the new file gateway.

B.

Use AWS DataSync to schedule a daily task to replicate data between the on-premises Windows file server and Amazon FSx.

C.

Use AWS Data Pipeline to schedule a daily task to replicate data between the on-premises Windows file server and Amazon Elastic File System (Amazon EFS).

D.

Use AWS DataSync to schedule a daily task lo replicate data between the on-premises Windows file server and Amazon Elastic File System (Amazon EFS),

Question 157

A large company is migrating ils entire IT portfolio to AWS. Each business unit in the company has a standalone AWS account that supports both development and test environments. New accounts to support production workloads will be needed soon.

The finance department requires a centralized method for payment but must maintain visibility into each group's spending to allocate costs.

The security team requires a centralized mechanism to control 1AM usage in all the company's accounts.

What combination of the following options meet the company's needs with the LEAST effort? (Select TWO.)

Options:

A.

Use a collection of parameterized AWS CloudFormation templates defining common 1AM permissions that are launched into each account. Require all new and existing accounts to launch the appropriate stacks to enforce the least privilege model.

B.

Use AWS Organizations to create a new organization from a chosen payer account and define an organizational unit hierarchy. Invite the existing accounts to join the organization and create new accounts using Organizations.

C.

Require each business unit to use its own AWS accounts. Tag each AWS account appropriately and enable Cost Explorer to administer chargebacks.

D.

Enable all features of AWS Organizations and establish appropriate service control policies that filter 1AM permissions for sub-accounts.

E.

Consolidate all of the company's AWS accounts into a single AWS account. Use tags for billing purposes and the lAM's Access Advisor feature to enforce the least privilege model.

Question 158

A video streaming company recently launched a mobile app for video sharing. The app uploads various files to an Amazon S3 bucket in the us-east-1 Region. The files range in size from 1 GB to 10 GB.

Users who access the app from Australia have experienced uploads that take long periods of time Sometimes the files fail to completely upload for these users . A solutions architect must improve the app' performance for these uploads

Which solutions will meet these requirements? (Select TWO.)

Options:

A.

Enable S3 Transfer Acceleration on the S3 bucket Configure the app to use the Transfer Acceleration endpoint for uploads

B.

Configure an S3 bucket in each Region to receive the uploads. Use S3 Cross-Region Replication to copy the files to the distribution S3 bucket.

C.

Set up Amazon Route 53 with latency-based routing to route the uploads to the nearest S3 bucket Region.

D.

Configure the app to break the video files into chunks Use a multipart upload to transfer files to Amazon S3.

E.

Modify the app to add random prefixes to the files before uploading

Question 159

A company is running a workload that consists of thousands of Amazon EC2 instances. The workload is running in a VPC that contains several public subnets and private subnets. The public subnets have a route for 0.0.0.0/0 to an existing internet gateway. The private subnets have a route for 0.0.0.0/0 to an existing NAT gateway.

A solutions architect needs to migrate the entire fleet of EC2 instances to use IPv6. The EC2 instances that are in private subnets must not be accessible from the public internet.

What should the solutions architect do to meet these requirements?

Options:

A.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.

B.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.

C.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.

D.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.

Question 160

A company is designing an AWS Organizations structure. The company wants to standardize a process to apply tags across the entire organization. The company will require tags with specific values when a user creates a new resource. Each of the company's OUs will have unique tag values.

Which solution will meet these requirements?

Options:

A.

Use an SCP to deny the creation of resources that do not have the required tags. Create a tag policy that Includes the tag values that the company has assigned to each OU. Attach the tag policies to the OUs.

B.

Use an SCP to deny the creation of resources that do not have the required tags. Create a tag policy that includes the tag values that the company has assigned to each OU. Attach the tag policies to the organization's management account.

C.

Use an SCP to allow the creation of resources only when the resources have the required tags. Create a tag policy that includes the tag values that the company has assigned to each OU. Attach the tag policies to the OUs.

D.

Use an SCP to deny the creation of resources that do not have the required tags. Define the list of tags. Attach the SCP to the OUs

Question 161

A company hosts an application on AWS. The application reads and writes objects that are stored in a single Amazon S3 bucket. The company must modify the application to deploy the application in two AWS Regions.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Set up an Amazon CloudFront distribution with the S3 bucket as an origin. Deploy the application to a second Region Modify the application to use the CloudFront distribution. Use AWS Global Accelerator to access the data in the S3 bucket.

B.

Create a new S3 bucket in a second Region. Set up bidirectional S3 Cross-Region Replication (CRR) between the original S3 bucket and the new S3 bucket. Configure an S3 Multi-Region Access Point that uses both S3 buckets. Deploy a modified application to both Regions.

C.

Create a new S3 bucket in a second Region Deploy the application in the second Region. Configure the application to use the new S3 bucket. Set up S3 Cross-Region Replication (CRR) from the original S3 bucket to the new S3 bucket.

D.

Set up an S3 gateway endpoint with the S3 bucket as an origin. Deploy the application to a second Region. Modify the application to use the new S3 gateway endpoint. Use S3 Intelligent-Tiering on the S3 bucket.

Question 162

A large education company recently introduced Amazon Workspaces to provide access to internal applications across multiple universities. The company is storing user profiles on an Amazon FSx (or Windows File Server file system. The tile system is configured with a DNS alias and is connected to a self-managed Active Directory. As more users begin to use the Workspaces, login time increases to unacceptable levels.

An investigation reveals a degradation in performance of the file system. The company created the file system on HDD storage with a throughput of 16 MBps. A solutions architect must improve the performance of the file system during a defined maintenance window.

What should the solutions architect do to meet these requirements with the LEAST administrative effort?

Options:

A.

Use AWS Backup to create a point-ln-lime backup of the file system. Restore the backup to a new FSx for Windows File Server file system. Select SSD as the storage type Select 32 MBps as the throughput capacity. When the backup and restore process Is completed, adjust the DNS alias accordingly. Delete the original file system.

B.

Disconnect users from the file system. In the Amazon FSx console, update the throughput capacity to 32 MBps. Update the storage type to SSD. Reconnect users to the file system.

C.

Deploy an AWS DataSync agent onto a new Amazon EC2 Instance. Create a task. Configure the existing file system as the source location. Configure a new FSx for Windows File Server file system with SSD storage and 32 MBps of throughput as the target location. Schedule the task. When the task is completed, adjust the DNS alias accordingly. Delete the original file system.

D.

Enable shadow copies on the existing file system by using a Windows PowerShell command. Schedule the shadow copy job to create a point-in-time backup of the file system. Choose to restore previous versions. Create a new FSx for Windows File Server file system with SSD storage and 32 MBps of throughput. When the copy job is completed, adjust the DNS alias. Delete the original file system.

Question 163

A company has an organization in AWS Organizations that has a large number of AWS accounts. One of the AWS accounts is designated as a transit account and has a transit gateway that is shared with all of the other AWS accounts AWS Site-to-Site VPN connections are configured between ail of the company's global offices and the transit account The company has AWS Config enabled on all of its accounts.

The company's networking team needs to centrally manage a list of internal IP address ranges thatbelong to the global offices Developers Will reference this list to gain access to applications securely.

Which solution meets these requirements with the LEAST amount of operational overhead?

Options:

A.

Create a JSON file that is hosted in Amazon S3 and that lists all of the internal IP address ranges Configure an Amazon Simple Notification Service (Amazon SNS) topic in each of the accounts that can be involved when the JSON file is updated. Subscribe an AWS Lambda function to the SNS topic to update all relevant security group rules with Vie updated IP address ranges.

B.

Create a new AWS Config managed rule that contains all of the internal IP address ranges Use the rule to check the security groups in each of the accounts to ensure compliance with the list of IP address ranges. Configure the rule to automatically remediate any noncompliant security group that is detected.

C.

In the transit account, create a VPC prefix list with all of the internal IP address ranges. Use AWS Resource Access Manager to share the prefix list with all of the other accounts. Use the shared prefix list to configure security group rules is the other accounts.

D.

In the transit account create a security group with all of the internal IP address ranges. Configure the security groups in me other accounts to reference the transit account's securitygroup by using a nested security group reference of *./sg-1a2b3c4d".

Question 164

A company uses an AWS CodeCommit repository The company must store a backup copy of the data that is in the repository in a second AWS Region

Which solution will meet these requirements?

Options:

A.

Configure AWS Elastic Disaster Recovery to replicate the CodeCommit repository data to the second Region

B.

Use AWS Backup to back up the CodeCommit repository on an hourly schedule Create a cross-Region copy in the second Region

C.

Create an Amazon EventBridge rule to invoke AWS CodeBuild when the company pushes code to the repository Use CodeBuild to clone the repository Create a zip file of the content Copy the file to an S3 bucket in the second Region

D.

Create an AWS Step Functions workflow on an hourly schedule to take a snapshot of the CodeCommit repository Configure the workflow to copy the snapshot to an S3 bucket in the second Region

Question 165

A retail company is operating its ecommerce application on AWS. The application runs on Amazon EC2 instances behind an Application Load Balancer (ALB). The company uses an Amazon RDS DB instance as the database backend. Amazon CloudFront is configured with one origin that points to the ALB. Static content is cached. Amazon Route 53 is used to host all public zones.

After an update of the application, the ALB occasionally returns a 502 status code (Bad Gateway) error. The root cause is malformed HTTP headers that are returned to the ALB. The webpage returns successfully when a solutions architect reloads the webpage immediately after the error occurs.

While the company is working on the problem, the solutions architect needs to provide a custom error page instead of the standard ALB error page to visitors.

Which combination of steps will meet this requirement with the LEAST amount of operational overhead? (Choose two.)

Options:

A.

Create an Amazon S3 bucket. Configure the S3 bucket to host a static webpage. Upload the custom error pages to Amazon S3.

B.

Create an Amazon CloudWatch alarm to invoke an AWS Lambda function if the ALB health check response Target.FailedHealthChecks is greater than 0. Configure the Lambda function to modify the forwarding rule at the ALB to point to a publicly accessible web server.

C.

Modify the existing Amazon Route 53 records by adding health checks. Configure a fallback target if the health check fails. Modify DNS records to point to a publicly accessible webpage.

D.

Create an Amazon CloudWatch alarm to invoke an AWS Lambda function if the ALB health check response Elb.InternalError is greater than 0. Configure the Lambda function to modify the forwarding rule at the ALB to point to a public accessible web server.

E.

Add a custom error response by configuring a CloudFront custom error page. Modify DNS records to point to a publicly accessible web page.

Question 166

A company uses AWS Organizations for a multi-account setup in the AWS Cloud. The company's finance team has a data processing application that uses AWS Lambda and Amazon DynamoDB. The company's marketing team wants to access the data that is stored in the DynamoDB table.

The DynamoDB table contains confidential data. The marketing team can have access to only specific attributes of data in the DynamoDB table. The fi-nance team and the marketing team have separate AWS accounts.

What should a solutions architect do to provide the marketing team with the appropriate access to the DynamoDB table?

Options:

A.

Create an SCP to grant the marketing team's AWS account access to the specific attributes of the DynamoDB table. Attach the SCP to the OU of the finance team.

B.

Create an IAM role in the finance team's account by using IAM policy conditions for specific DynamoDB attributes (fine-grained access con-trol). Establish trust with the marketing team's account. In the mar-keting team's account, create an IAM role that has permissions to as-sume the IAM role in the finance team's account.

C.

Create a resource-based IAM policy that includes conditions for spe-cific DynamoDB attributes (fine-grained access control). Attach the policy to the DynamoDB table. In the marketing team's account, create an IAM role that has permissions to access the DynamoDB table in the finance team's account.

D.

Create an IAM role in the finance team's account to access the Dyna-moDB table. Use an IAM permissions boundary to limit the access to the specific attributes. In the marketing team's account, create an IAM role that has permissions to assume the IAM role in the finance team's account.

Question 167

A company uses Amazon S3 to store files and images in a variety of storage classes. The company's S3 costs have increased substantially during the past year.

A solutions architect needs to review data trends for the past 12 months and identity the appropriate storage class for the objects.

Which solution will meet these requirements?

Options:

A.

Download AWS Cost and Usage Reports for the last 12 months of S3 usage. Review AWS Trusted Advisor recommendations for cost savings.

B.

Use S3 storage class analysis. Import data trends into an Amazon QuickSight dashboard to analyze storage trends.

C.

Use Amazon S3 Storage Lens. Upgrade the default dashboard to include advanced metrics for storage trends.

D.

Use Access Analyzer for S3. Download the Access Analyzer for S3 report for the last 12 months. Import the csvfile to an Amazon QuickSight dashboard.

Question 168

A company is using Amazon API Gateway to deploy a private REST API that will provide access to sensitive data. The API must be accessible only from an application that is deployed in a VPC. The company deploys the API successfully. However, the API is not accessible from an Amazon EC2 instance that is deployed in the VPC.

Which solution will provide connectivity between the EC2 instance and the API?

Options:

A.

Create an interface VPC endpoint for API Gateway. Attach an endpoint policy that allows apigateway:* actions. Disable private DNS naming for the VPC endpoint. Configure an API resource policy that allows access from the VPC. Use the VPC endpoint's DNS name to access the API.

B.

Create an interface VPC endpoint for API Gateway. Attach an endpoint policy that allows the execute-api:lnvoke action. Enable private DNS naming for the VPC endpoint. Configure an API resource policy that allows access from the VPC endpoint. Use the API endpoint's DNS names to access the API. Most Voted

C.

Create a Network Load Balancer (NLB) and a VPC link. Configure private integration between API Gateway and the NLB. Use the API endpoint's DNS names to access the API.

D.

Create an Application Load Balancer (ALB) and a VPC Link. Configure private integration between API Gateway and the ALB. Use the ALB endpoint's DNS name to access the API.

Question 169

A company is designing its network configuration in the AWS Cloud. The company uses AWS Organizations to manage a multi-account setup. The company has three OUs. Each OU contains more than 100 AWS accounts. Each account has a single VPC, and all the VPCs in each OU are in the same AWS Region.

The CIDR ranges for all the AWS accounts do not overlap. The company needs to implement a solution in which VPCs in the same OU can communicate with each other but cannot communicatewith VPCs in other OUs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an AWS CloudFormation stack set that establishes VPC peering between accounts in each OU. Provision the stack set in each OU.

B.

In each OU, create a dedicated networking account that has a single VPC. Share this VPC with all the other accounts in the OU by using AWS Resource Access Manager (AWS RAM). Create a VPC peering connection between the networking account and each account in the OU.

C.

Provision a transit gateway in an account in each OU. Share the transit gateway across the organization by using AWS Resource Access Manager (AWS RAM). Create transit gateway VPC attachments for each VPC.

D.

In each OU, create a dedicated networking account that has a single VPC. Establish a VPN connection between the networking account and the other accounts in the OU. Use third-party routing software to route transitive traffic between the VPCs.

Question 170

A company has several AWS accounts. A development team is building an automation framework for cloud governance and remediation processes. The automation framework uses AWS Lambda functions in a centralized account. A solutions architect must implement a least privilege permissions policy that allows the Lambda functions to run in each of the company's AWS accounts.

Which combination of steps will meet these requirements? (Choose two.)

Options:

A.

In the centralized account, create an IAM role that has the Lambda service as a trusted entity. Add an inline policy to assume the roles of the other AWS accounts.

B.

In the other AWS accounts, create an IAM role that has minimal permissions. Add the centralized account's Lambda IAM role as a trusted entity.

C.

In the centralized account, create an IAM role that has roles of the other accounts as trusted entities. Provide minimal permissions.

D.

In the other AWS accounts, create an IAM role that has permissions to assume the role of the centralized account. Add the Lambda service as a trusted entity.

E.

In the other AWS accounts, create an IAM role that has minimal permissions. Add the Lambda service as a trusted entity.

Question 171

Question:

A company is migrating its on-premises file transfer solution to AWS Transfer Family. The current system includes an SFTP server, a transformation application, and a messaging server. Transformations run every 5 minutes and notify the messaging server when complete.

The company wants to simplify and reduce operational overhead.

Options:

A.

Use Amazon EFS and a cron job to perform the transformations. Notify using SNS.

B.

Use Amazon EMR to perform the transformations and notify via SNS.

C.

Use Amazon S3 as storage with AWS Glue triggered by S3 events for transformations, and notify via SQS.

D.

Use Amazon EFS with a time-based AWS Glue job every 5 minutes.

Question 172

A company is preparing to deploy an Amazon Elastic Kubernetes Service (Amazon EKS) cluster for a workload. The company expects the cluster to support an

unpredictable number of stateless pods. Many of the pods will be created during a short time period as the workload automatically scales the number of replicas that the workload uses.

Which solution will MAXIMIZE node resilience?

Options:

A.

Use a separate launch template to deploy the EKS control plane into a second cluster that is separate from the workload node groups.

B.

Update the workload node groups. Use a smaller number of node groups and larger instances in the node groups.

C.

Configure the Kubernetes Cluster Autoscaler to ensure that the compute capacity of the workload node groups stays under provisioned.

D.

Configure the workload to use topology spread constraints that are based on Availability Zone.

Question 173

A company has automated the nightly retraining of its machine learning models by using AWS Step Functions. The workflow consists of multiple steps that use AWS Lambda Each step can fail for various reasons and any failure causes a failure of the overall workflow

A review reveals that the retraining has failed multiple nights in a row without the company noticing the failure A solutions architect needs to improve the workflow so that notifications are sent for all types of failures in the retraining process

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE)

Options:

A.

Create an Amazon Simple Notification Service (Amazon SNS) topic with a subscription of type "Email" that targets the team's mailing list.

B.

Create a task named "Email" that forwards the input arguments to the SNS topic

C.

Add a Catch field all Task Map. and Parallel states that have a statement of "Error Equals": [ “States. ALL”] and "Next": "Email".

D.

Add a new email address to Amazon Simple Email Service (Amazon SES). Verify the email address.

E.

Create a task named "Email" that forwards the input arguments to the SES email address

F.

Add a Catch field to all Task Map, and Parallel states that have a statement of "Error Equals": [ "states. Runtime”] and "Next": "Email".

Question 174

A company's compliance audit reveals that some Amazon Elastic Block Store (Amazon EBS) volumes that were created in an AWS account were not encrypted. A solutions architect must Implement a solution to encrypt all new EBS volumes at rest

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Create an Amazon EventBridge rule to detect the creation of unencrypted EBS volumes. Invoke an AWS Lambda function to delete noncompliant volumes.

B.

Use AWS Audit Manager with data encryption.

C.

Create an AWS Config rule to detect the creation of a new EBS volume. Encrypt the volume by using AWS Systems Manager Automation.

D.

Turn in EBS encryption by default in all AWS Regions.

Exam Detail
Exam Code: SAP-C02
Last Update: Feb 12, 2026
SAP-C02 Question Answers
Page: 1 / 44
Total 614 questions