Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Changed SAP-C02 Exam Questions

Page: 30 / 37
Total 533 questions

AWS Certified Solutions Architect - Professional Questions and Answers

Question 117

A company is providing weather data over a REST-based API to several customers. The API is hosted by Amazon API Gateway and is integrated with different AWS Lambda functions for each API operation. The company uses Amazon Route 53 for DNS and has created a resource record of weather.example.com. The company stores data for the API in Amazon DynamoDB tables. The company needs a solution that will give the API the ability to fail over to a different AWS Region.

Which solution will meet these requirements?

Options:

A.

Deploy a new set of Lambda functions in a new Region. Update the API Gateway API to use an edge-optimized API endpoint with Lambda functions from both Regions as targets. Convert the DynamoDB tables to global tables.

B.

Deploy a new API Gateway API and Lambda functions in another Region. Change the Route 53 DNS record to a multivalue answer. Add both API Gateway APIs to the answer. Enable target health monitoring. Convert the DynamoDB tables to global tables.

C.

Deploy a new API Gateway API and Lambda functions in another Region. Change the Route 53 DNS record to a failover record. Enable target health monitoring. Convert the DynamoDB tables to global tables.

D.

Deploy a new API Gateway API in a new Region. Change the Lambda functions to global functions. Change the Route 53 DNS record to a multivalue answer. Add both API Gateway APIs to the answer. Enable target health monitoring. Convert the DynamoDB tables to global tables.

Question 118

A company's public API runs as tasks on Amazon Elastic Container Service (Amazon ECS). The tasks run on AWS Fargate behind an Application Load Balancer (ALB) and are configured with Service Auto Scaling for the tasks based on CPU utilization. This service has been running well for several months.

Recently, API performance slowed down and made the application unusable. The company discovered that a significant number of SQL injection attacks had occurred against the API and that the API service had scaled to its maximum amount.

A solutions architect needs to implement a solution that prevents SQL injection attacks from reaching the ECS API service. The solution must allow legitimate traffic through and must maximize operational efficiency.

Which solution meets these requirements?

Options:

A.

Create a new AWS WAF web ACL to monitor the HTTP requests and HTTPS requests that are forwarded to the ALB in front of the ECS tasks.

B.

Create a new AWS WAF Bot Control implementation. Add a rule in the AWS WAF Bot Control managed rule group to monitor traffic and allow only legitimate traffic to the ALB in front of the ECS tasks.

C.

Create a new AWS WAF web ACL. Add a new rule that blocks requests that match the SQL database rule group. Set the web ACL to allow all other traffic that does not match those rules. Attach the web ACL to the ALB in front of the ECS tasks.

D.

Create a new AWS WAF web ACL. Create a new empty IP set in AWS WAF. Add a new rule to the web ACL to block requests that originate from IP addresses in the new IP set. Create an AWS Lambda function that scrapes the API logs for IP addresses that send SQL injection attacks, and add those IP addresses to the IP set. Attach the web ACL to the ALB in front of the ECS tasks.

Question 119

A company needs to architect a hybrid DNS solution. This solution will use an Amazon Route 53 private hosted zone for the domain cloud.example.com for the resources stored within VPCs.

The company has the following DNS resolution requirements:

• On-premises systems should be able to resolve and connect to cloud.example.com.

• All VPCs should be able to resolve cloud.example.com.

There is already an AWS Direct Connect connection between the on-premises corporate network and AWS Transit Gateway. Which architecture should the company use to meet these requirements with the HIGHEST performance?

Options:

A.

Associate the private hosted zone to all the VPCs. Create a Route 53 inbound resolver in theshared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

B.

Associate the private hosted zone to all the VPCs. Deploy an Amazon EC2 conditional forwarder in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the conditional forwarder.

C.

Associate the private hosted zone to the shared services VPC. Create a Route 53 outbound resolver in the shared services VPC. Attach all VPCs to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the outbound resolver.

D.

Associate the private hosted zone to the shared services VPC. Create a Route 53 inbound resolver in the shared services VPC. Attach the shared services VPC to the transit gateway and create forwarding rules in the on-premises DNS server for cloud.example.com that point to the inbound resolver.

Question 120

A company is running a critical stateful web application on two Linux Amazon EC2 instances behind an Application Load Balancer (ALB) with an Amazon RDS for MySQL database The company hosts the DNS records for the application in Amazon Route 53 A solutions architect must recommend a solution to improve the resiliency of the application

The solution must meet the following objectives:

• Application tier RPO of 2 minutes. RTO of 30 minutes

• Database tier RPO of 5 minutes RTO of 30 minutes

The company does not want to make significant changes to the existing application architecture The company must ensure optimal latency after a failover

Which solution will meet these requirements?

Options:

A.

Configure the EC2 instances to use AWS Elastic Disaster Recovery Create a cross-Region read replica for the RDS DB instance Create an ALB in a second AWS Region Create an AWS Global Accelerator endpoint and associate the endpoint with the ALBs Update DNS records to point to the Global Accelerator endpoint

B.

Configure the EC2 instances to use Amazon Data Lifecycle Manager (Amazon DLM) to take snapshots of the EBS volumes Configure RDS automated backups Configure backup replication to a second AWS Region Create an ALB in the second Region Create an AWS Global Accelerator endpoint, and associate the endpoint with the ALBs Update DNS records to point to the Global Accelerator endpoint

C.

Create a backup plan in AWS Backup for the EC2 instances and RDS DB instance Configure backup replication to a second AWS Region Create an ALB in the second Region Configure an Amazon CloudFront distribution in front of the ALB Update DNS records to point to CloudFront

D.

Configure the EC2 instances to use Amazon Data Lifecycle Manager (Amazon DLM) to take snapshots of the EBS volumes Create a cross-Region read replica for the RDS DB instance Create an ALB in a second AWS Region Create an AWS Global Accelerator endpoint and associate the endpoint with the ALBs

Page: 30 / 37
Total 533 questions