Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free and Premium Amazon Web Services Data-Engineer-Associate Dumps Questions Answers

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company wants to analyze sales records that the company stores in a MySQL database. The company wants to correlate the records with sales opportunities identified by Salesforce.

The company receives 2 GB erf sales records every day. The company has 100 GB of identified sales opportunities. A data engineer needs to develop a process that will analyze and correlate sales records and sales opportunities. The process must run once each night.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to fetch both datasets. Use AWS Lambda functions to correlate the datasets. Use AWS Step Functions to orchestrate the process.

B.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with the sales opportunities. Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate the process.

C.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use AWS Glue to fetch sales records from the MySQL database. Correlate the sales records with sales opportunities. Use AWS Step Functions to orchestrate the process.

D.

Use Amazon AppFlow to fetch sales opportunities from Salesforce. Use Amazon Kinesis Data Streams to fetch sales records from the MySQL database. Use Amazon Managed Service for Apache Flink to correlate the datasets. Use AWS Step Functions to orchestrate the process.

Buy Now
Question 2

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

Question 3

A financial company wants to use Amazon Athena to run on-demand SQL queries on a petabyte-scale dataset to support a business intelligence (BI) application. An AWS Glue job that runs during non-business hours updates the dataset once every day. The BI application has a standard data refresh frequency of 1 hour to comply with company policies.

A data engineer wants to cost optimize the company's use of Amazon Athena without adding any additional infrastructure costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure an Amazon S3 Lifecycle policy to move data to the S3 Glacier Deep Archive storage class after 1 day

B.

Use the query result reuse feature of Amazon Athena for the SQL queries.

C.

Add an Amazon ElastiCache cluster between the Bl application and Athena.

D.

Change the format of the files that are in the dataset to Apache Parquet.

Question 4

A company is setting up a data pipeline in AWS. The pipeline extracts client data from Amazon S3 buckets, performs quality checks, and transforms the data. The pipeline stores the processed data in a relational database. The company will use the processed data for future queries.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue Data Quality to enforce suggested quality rules. Load the data and the quality check results into an Amazon RDS for MySQL instance.

B.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data into an Amazon RDS for MySQL instance. Load the quality check results into a new S3 bucket.

C.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue DataBrew to perform quality checks. Load the processed data and the quality check results into a new S3 bucket.

D.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data and quality check results into an Amazon RDS for MySQL instance.

Question 5

A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.

Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use one AWS Glue job to replicate existing data. Use a second AWS Glue job to replicate future changes.

B.

Use AWS Database Migration Service (AWS DMS) to replicate existing data. Use AWS Glue jobs to replicate future changes.

C.

Use AWS Database Migration Service (AWS DMS) to replicate existing data and future changes.

D.

Use AWS Glue jobs to replicate existing data. Use Amazon Kinesis Data Streams to replicate future changes.

Question 6

A retail company stores customer data in an Amazon S3 bucket. Some of the customer data contains personally identifiable information (PII) about customers. The company must not share PII data with business partners.

A data engineer must determine whether a dataset contains PII before making objects in the dataset available to business partners.

Which solution will meet this requirement with the LEAST manual intervention?

Options:

A.

Configure the S3 bucket and S3 objects to allow access to Amazon Macie. Use automated sensitive data discovery in Macie.

B.

Configure AWS CloudTrail to monitor S3 PUT operations. Inspect the CloudTrail trails to identify operations that save PII.

C.

Create an AWS Lambda function to identify PII in S3 objects. Schedule the function to run periodically.

D.

Create a table in AWS Glue Data Catalog. Write custom SQL queries to identify PII in the table. Use Amazon Athena to run the queries.

Question 7

A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.

A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.

Which actions should the data engineer take to meet this requirement? (Choose two.)

Options:

A.

Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.

B.

Modify the database schema to include additional tables and indexes.

C.

Reboot the RDS DB instance once each week.

D.

Upgrade to a larger instance size.

E.

Implement caching to reduce the database query load.

Question 8

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Question 9

A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.

Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.

Which combination of solutions will meet these requirements? (Select TWO.)

Options:

A.

Use AWS Glue DataBrew to perform extract, transform, and load (ETL) tasks that mask the PII data before analysis.

B.

Use Amazon GuardDuty to monitor access patterns for the PII data that is used in the engineering pipeline.

C.

Configure an Amazon Made discovery job for the S3 bucket.

D.

Use AWS Identity and Access Management (IAM) to manage permissions and to control access to the PII data.

E.

Write custom scripts in an application to mask the PII data and to control access.

Question 10

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

Question 11

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Question 12

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

Options:

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.

Question 13

A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.

Which solution will meet this requirement?

Options:

A.

Turn on concurrency scaling in workload management (WLM) for Redshift Serverless workgroups.

B.

Turn on concurrency scaling at the workload management (WLM) queue level in the Redshift cluster.

C.

Turn on concurrency scaling in the settings during the creation of and new Redshift cluster.

D.

Turn on concurrency scaling for the daily usage quota for the Redshift cluster.

Question 14

A mobile gaming company wants to capture data from its gaming app. The company wants to make the data available to three internal consumers of the data. The data records are approximately 20 KB in size.

The company wants to achieve optimal throughput from each device that runs the gaming app. Additionally, the company wants to develop an application to process data streams. The stream-processing application must have dedicated throughput for each internal consumer.

Which solution will meet these requirements?

Options:

A.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Use the enhanced fan-out feature with a stream for each internal consumer.

B.

Configure the mobile app to call the PutRecordBatch API operation to send data to Amazon Data Firehose. Submit an AWS Support case to turn on dedicated throughput for the company's AWS account. Allow each internal consumer to access the stream.

C.

Configure the mobile app to use the Amazon Kinesis Producer Library (KPL) to send data to Amazon Data Firehose. Use the enhanced fan-out feature with a stream for each internal consumer.

D.

Configure the mobile app to call the PutRecords API operation to send data to Amazon Kinesis Data Streams. Host the stream-processing application for each internal consumer on Amazon EC2 instances. Configure auto scaling for the EC2 instances.

Question 15

A company is migrating a legacy application to an Amazon S3 based data lake. A data engineer reviewed data that is associated with the legacy application. The data engineer found that the legacy data contained some duplicate information.

The data engineer must identify and remove duplicate information from the legacy application data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Write a custom extract, transform, and load (ETL) job in Python. Use the DataFramedrop duplicatesf) function by importing the Pandas library to perform data deduplication.

B.

Write an AWS Glue extract, transform, and load (ETL) job. Use the FindMatches machine learning (ML) transform to transform the data to perform data deduplication.

C.

Write a custom extract, transform, and load (ETL) job in Python. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

D.

Write an AWS Glue extract, transform, and load (ETL) job. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

Question 16

A company uses AWS Key Management Service (AWS KMS) to encrypt an Amazon Redshift cluster. The company wants to configure a cross-Region snapshot of the Redshift cluster as part of disaster recovery (DR) strategy.

A data engineer needs to use the AWS CLI to create the cross-Region snapshot.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create a KMS key and configure a snapshot copy grant in the source AWS Region.

B.

In the source AWS Region, enable snapshot copying. Specify the name of the snapshot copy grant that is created in the destination AWS Region.

C.

In the source AWS Region, enable snapshot copying. Specify the name of the snapshot copy grant that is created in the source AWS Region.

D.

Create a KMS key and configure a snapshot copy grant in the destination AWS Region.

E.

Convert the cluster to a Multi-AZ deployment.

Question 17

A company uses Amazon Athena for one-time queries against data that is in Amazon S3. The company has several use cases. The company must implement permission controls to separate query processes and access to query history among users, teams, and applications that are in the same AWS account.

Which solution will meet these requirements?

Options:

A.

Create an S3 bucket for each use case. Create an S3 bucket policy that grants permissions to appropriate individual IAM users. Apply the S3 bucket policy to the S3 bucket.

B.

Create an Athena workgroup for each use case. Apply tags to the workgroup. Create an 1AM policy that uses the tags to apply appropriate permissions to the workgroup.

C.

Create an JAM role for each use case. Assign appropriate permissions to the role for each use case. Associate the role with Athena.

D.

Create an AWS Glue Data Catalog resource policy that grants permissions to appropriate individual IAM users for each use case. Apply the resource policy to the specific tables that Athena uses.

Question 18

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

Question 19

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

Options:

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Question 20

A company is using an AWS Transfer Family server to migrate data from an on-premises environment to AWS. Company policy mandates the use of TLS 1.2 or above to encrypt the data in transit.

Which solution will meet these requirements?

Options:

A.

Generate new SSH keys for the Transfer Family server. Make the old keys and the new keys available for use.

B.

Update the security group rules for the on-premises network to allow only connections that use TLS 1.2 or above.

C.

Update the security policy of the Transfer Family server to specify a minimum protocol version of TLS 1.2.

D.

Install an SSL certificate on the Transfer Family server to encrypt data transfers by using TLS 1.2.

Question 21

A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.

Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.

Which solution will meet this requirement?

Options:

A.

Create an AWS Lambda function to connect to the Redshift data warehouse. Configure the Lambda function to use the Redshift COPY command to copy the required data to the vendor's S3 bucket on a schedule.

B.

Create an AWS Glue job to connect to the Redshift data warehouse. Configure the AWS Glue job to use the Redshift UNLOAD command to load the required data to the vendor's S3 bucket on a schedule.

C.

Use the Amazon Redshift data sharing feature. Set the vendor's S3 bucket as the destination. Configure the source to be as a custom SQL query that selects the required data.

D.

Configure Amazon Redshift Spectrum to use the vendor's S3 bucket as destination. Enable dataquerying in both directions.

Question 22

A company uses Amazon S3 to store semi-structured data in a transactional data lake. Some of the data files are small, but other data files are tens of terabytes.

A data engineer must perform a change data capture (CDC) operation to identify changed data from the data source. The data source sends a full snapshot as a JSON file every day and ingests the changed data into the data lake.

Which solution will capture the changed data MOST cost-effectively?

Options:

A.

Create an AWS Lambda function to identify the changes between the previous data and the current data. Configure the Lambda function to ingest the changes into the data lake.

B.

Ingest the data into Amazon RDS for MySQL. Use AWS Database Migration Service (AWS DMS) to write the changed data to the data lake.

C.

Use an open source data lake format to merge the data source with the S3 data lake to insert the new data and update the existing data.

D.

Ingest the data into an Amazon Aurora MySQL DB instance that runs Aurora Serverless. Use AWS Database Migration Service (AWS DMS) to write the changed data to the data lake.

Question 23

A transportation company wants to track vehicle movements by capturing geolocation records. The records are 10 bytes in size. The company receives up to 10,000 records every second. Data transmission delays of a few minutes are acceptable because of unreliable network conditions.

The transportation company wants to use Amazon Kinesis Data Streams to ingest the geolocation data. The company needs a reliable mechanism to send data to Kinesis Data Streams. The company needs to maximize the throughput efficiency of the Kinesis shards.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Kinesis Agent

B.

Kinesis Producer Library (KPL)

C.

Amazon Data Firehose

D.

Kinesis SDK

Question 24

A company has a frontend ReactJS website that uses Amazon API Gateway to invoke REST APIs. The APIs perform the functionality of the website. A data engineer needs to write a Python script that can be occasionally invoked through API Gateway. The code must return results to API Gateway.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a custom Python script on an Amazon Elastic Container Service (Amazon ECS) cluster.

B.

Create an AWS Lambda Python function with provisioned concurrency.

C.

Deploy a custom Python script that can integrate with API Gateway on Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Create an AWS Lambda function. Ensure that the function is warm by scheduling an Amazon EventBridge rule to invoke the Lambda function every 5 minutes by using mock events.

Question 25

A technology company currently uses Amazon Kinesis Data Streams to collect log data in real time. The company wants to use Amazon Redshift for downstream real-time queries and to enrich the log data.

Which solution will ingest data into Amazon Redshift with the LEAST operational overhead?

Options:

A.

Set up an Amazon Data Firehose delivery stream to send data to a Redshift provisioned cluster table.

B.

Set up an Amazon Data Firehose delivery stream to send data to Amazon S3. Configure a Redshift provisioned cluster to load data every minute.

C.

Configure Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to send data directly to a Redshift provisioned cluster table.

D.

Use Amazon Redshift streaming ingestion from Kinesis Data Streams and to present data as a materialized view.

Question 26

A company has a data warehouse in Amazon Redshift. To comply with security regulations, the company needs to log and store all user activities and connection activities for the data warehouse.

Which solution will meet these requirements?

Options:

A.

Create an Amazon S3 bucket. Enable logging for the Amazon Redshift cluster. Specify the S3 bucket in the logging configuration to store the logs.

B.

Create an Amazon Elastic File System (Amazon EFS) file system. Enable logging for the Amazon Redshift cluster. Write logs to the EFS file system.

C.

Create an Amazon Aurora MySQL database. Enable logging for the Amazon Redshift cluster. Write the logs to a table in the Aurora MySQL database.

D.

Create an Amazon Elastic Block Store (Amazon EBS) volume. Enable logging for the Amazon Redshift cluster. Write the logs to the EBS volume.

Question 27

A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.

Which solution will give the company the ability to use Spark to access Athena?

Options:

A.

Athena query settings

B.

Athena workgroup

C.

Athena data source

D.

Athena query editor

Question 28

A company is building a data lake for a new analytics team. The company is using Amazon S3 for storage and Amazon Athena for query analysis. All data that is in Amazon S3 is in Apache Parquet format.

The company is running a new Oracle database as a source system in the company's data center. The company has 70 tables in the Oracle database. All the tables have primary keys. Data can occasionally change in the source system. The company wants to ingest the tables every day into the data lake.

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Create an Apache Sqoop job in Amazon EMR to read the data from the Oracle database. Configure the Sqoop job to write the data to Amazon S3 in Parquet format.

B.

Create an AWS Glue connection to the Oracle database. Create an AWS Glue bookmark job to ingest the data incrementally and to write the data to Amazon S3 in Parquet format.

C.

Create an AWS Database Migration Service (AWS DMS) task for ongoing replication. Set the Oracle database as the source. Set Amazon S3 as the target. Configure the task to write the data in Parquet format.

D.

Create an Oracle database in Amazon RDS. Use AWS Database Migration Service (AWS DMS) to migrate the on-premises Oracle database to Amazon RDS. Configure triggers on the tables to invoke AWS Lambda functions to write changed records to Amazon S3 in Parquet format.

Question 29

A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.

Which solution will meet these requirements with the LEAST ongoing maintenance?

Options:

A.

Use the DynamoDB TTL feature to automatically expire data based on timestamps.

B.

Configure a scheduled Amazon EventBridge rule to invoke an AWS Lambda function to check for data that is older than 1 month. Configure the Lambda function to delete old data.

C.

Configure a stream on the DynamoDB table to invoke an AWS Lambda function. Configure the Lambda function to delete data in the table that is older than 1 month.

D.

Use an AWS Lambda function to periodically scan the DynamoDB table for data that is older than 1 month. Configure the Lambda function to delete old data.

Question 30

A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an external schema that maps to the MSK cluster. Create a materialized view that references the external schema to consume the streaming data from the MSK topic.

B.

Develop an AWS Glue streaming extract, transform, and load (ETL) job to process the incoming data from Amazon MSK. Load the data into Amazon S3. Use Amazon Redshift Spectrum to read the data from Amazon S3.

C.

Create an external schema that maps to the streaming data source. Create a new Amazon Redshift table that references the external schema.

D.

Create an Amazon S3 bucket. Ingest the data from Amazon MSK. Create an event-driven AWS Lambda function to load the data from the S3 bucket to a new Amazon Redshift table.

Question 31

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Question 32

A company uses a variety of AWS and third-party data stores. The company wants to consolidate all the data into a central data warehouse to perform analytics. Users need fast response times for analytics queries.

The company uses Amazon QuickSight in direct query mode to visualize the data. Users normally run queries during a few hours each day with unpredictable spikes.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Redshift Serverless to load all the data into Amazon Redshift managed storage (RMS).

B.

Use Amazon Athena to load all the data into Amazon S3 in Apache Parquet format.

C.

Use Amazon Redshift provisioned clusters to load all the data into Amazon Redshift managed storage (RMS).

D.

Use Amazon Aurora PostgreSQL to load all the data into Aurora.

Question 33

A company has a production AWS account that runs company workloads. The company's security team created a security AWS account to store and analyze security logs from the production AWS account. The security logs in the production AWS account are stored in Amazon CloudWatch Logs.

The company needs to use Amazon Kinesis Data Streams to deliver the security logs to the security AWS account.

Which solution will meet these requirements?

Options:

A.

Create a destination data stream in the production AWS account. In the security AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the production AWS account.

B.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the security AWS account.

C.

Create a destination data stream in the production AWS account. In the production AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the security AWS account.

D.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the production AWS account.

Question 34

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Question 35

A data engineer is building an automated extract, transform, and load (ETL) ingestion pipeline by using AWS Glue. The pipeline ingests compressed files that are in an Amazon S3 bucket. The ingestion pipeline must support incremental data processing.

Which AWS Glue feature should the data engineer use to meet this requirement?

Options:

A.

Workflows

B.

Triggers

C.

Job bookmarks

D.

Classifiers

Question 36

A company uses Amazon Redshift for its data warehouse. The company must automate refresh schedules for Amazon Redshift materialized views.

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Use Apache Airflow to refresh the materialized views.

B.

Use an AWS Lambda user-defined function (UDF) within Amazon Redshift to refresh the materialized views.

C.

Use the query editor v2 in Amazon Redshift to refresh the materialized views.

D.

Use an AWS Glue workflow to refresh the materialized views.

Question 37

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling betweenone to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

Question 38

A company stores datasets in JSON format and .csv format in an Amazon S3 bucket. The company has Amazon RDS for Microsoft SQL Server databases, Amazon DynamoDB tables that are in provisioned capacity mode, and an Amazon Redshift cluster. A data engineering team must develop a solution that will give data scientists the ability to query all data sources by using syntax similar to SQL.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Amazon Athena to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

B.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use Redshift Spectrum to query the data. Use SQL for structured data sources. Use PartiQL for data that is stored in JSON format.

C.

Use AWS Glue to crawl the data sources. Store metadata in the AWS Glue Data Catalog. Use AWS Glue jobs to transform data that is in JSON format to Apache Parquet or .csv format. Store the transformed data in an S3 bucket. Use Amazon Athena to query the original and transformed data from the S3 bucket.

D.

Use AWS Lake Formation to create a data lake. Use Lake Formation jobs to transform the data from all data sources to Apache Parquet format. Store the transformed data in an S3 bucket. Use Amazon Athena or Redshift Spectrum to query the data.

Question 39

A media company wants to improve a system that recommends media content to customer based on user behavior and preferences. To improve the recommendation system, the company needs to incorporate insights from third-party datasets into the company's existing analytics platform.

The company wants to minimize the effort and time required to incorporate third-party datasets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use API calls to access and integrate third-party datasets from AWS Data Exchange.

B.

Use API calls to access and integrate third-party datasets from AWS

C.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from AWS CodeCommit repositories.

D.

Use Amazon Kinesis Data Streams to access and integrate third-party datasets from Amazon Elastic Container Registry (Amazon ECR).

Question 40

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Question 41

A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Confiqure an AWS Lambda function to load data from the S3 bucket into a pandas dataframe- Write a SQL SELECT statement on the dataframe to query the required column.

B.

Use S3 Select to write a SQL SELECT statement to retrieve the required column from the S3 objects.

C.

Prepare an AWS Glue DataBrew project to consume the S3 objects and to query the required column.

D.

Run an AWS Glue crawler on the S3 objects. Use a SQL SELECT statement in Amazon Athena to query the required column.

Question 42

A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.

The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.

Which solution will meet these requirements?

Options:

A.

Keep using the EVEN distribution style for all tables. Specify primary and foreign keys for all tables.

B.

Use the ALL distribution style for large tables. Specify primary and foreign keys for all tables.

C.

Use the ALL distribution style for rarely updated small tables. Specify primary and foreign keys for all tables.

D.

Specify a combination of distribution, sort, and partition keys for all tables.

Question 43

A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.

Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Use an AWS Database Migration Service (AWS DMS) full load plus CDC job to load tables that contain monotonically increasing data columns from the on-premises data warehouse to Amazon S3. Use custom logic in AWS Glue to append the daily incremental data to a full-load copy that is in Amazon S3.

B.

Use an AWS Glue Java Database Connectivity (JDBC) connection. Configure a job bookmark for a column that contains monotonically increasing values. Write custom logic to append the daily incremental data to a full-load copy that is in Amazon S3.

C.

Use an AWS Database Migration Service (AWS DMS) full load migration to load the data warehouse tables into Amazon S3 every day Overwrite the previous day's full-load copy every day.

D.

Use AWS Glue to load a full copy of the data warehouse tables into Amazon S3 every day. Overwrite the previous day's full-load copy every day.

Question 44

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Question 45

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

Options:

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Question 46

A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.

The company needs the workflow to perform specific steps based on the content of the incoming data.

Which Step Functions state type should the company use to meet this requirement?

Options:

A.

Parallel

B.

Choice

C.

Task

D.

Map

Question 47

A data engineer needs Amazon Athena queries to finish faster. The data engineer notices that all the files the Athena queries use are currently stored in uncompressed .csv format. The data engineer also notices that users perform most queries by selecting a specific column.

Which solution will MOST speed up the Athena query performance?

Options:

A.

Change the data format from .csvto JSON format. Apply Snappy compression.

B.

Compress the .csv files by using Snappy compression.

C.

Change the data format from .csvto Apache Parquet. Apply Snappy compression.

D.

Compress the .csv files by using gzjg compression.

Question 48

A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.

Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?

Options:

A.

AWS DataSync

B.

AWS Glue

C.

AWS Direct Connect

D.

Amazon S3 Transfer Acceleration

Question 49

A company runs multiple applications on AWS. The company configured each application to output logs. The company wants to query and visualize the application logs in near real time.

Which solution will meet these requirements?

Options:

A.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an Amazon S3 bucket. Create an AWS Lambda function that runs on a schedule to export the required log groups to the S3 bucket. Use Amazon Athena to query the log data in the S3 bucket.

B.

Create an Amazon OpenSearch Service domain. Configure the applications to output logs to Amazon CloudWatch Logs log groups. Create an OpenSearch Service subscription filter for each log group to stream the data to OpenSearch. Create the required queries and dashboards in OpenSearch Service to analyze and visualize the data.

C.

Configure the applications to output logs to Amazon CloudWatch Logs log groups. Use CloudWatch log anomaly detection to query and visualize the log data.

D.

Update the application code to send the log data to Amazon QuickSight by using Super-fast, Parallel, In-memory Calculation Engine (SPICE). Create the required analyses and dashboards in QuickSight.

Question 50

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.

Question 51

A company has an application that uses an Amazon API Gateway REST API and an AWS Lambda function to retrieve data from an Amazon DynamoDB instance. Users recently reported intermittent high latency in the application's response times. A data engineer finds that the Lambda function experiences frequent throttling when the company's other Lambda functions experience increased invocations.

The company wants to ensure the API's Lambda function operates without being affected by other Lambda functions.

Which solution will meet this requirement MOST cost-effectively?

Options:

A.

Increase the number of read capacity unit (RCU) in DynamoDB.

B.

Configure provisioned concurrency for the Lambda function.

C.

Configure reserved concurrency for the Lambda function.

D.

Increase the Lambda function timeout and allocated memory.