Big Cyber Monday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

AWS Certified Associate Data-Engineer-Associate Book

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 37

A company stores server logs in an Amazon 53 bucket. The company needs to keep the logs for 1 year. The logs are not required after 1 year.

A data engineer needs a solution to automatically delete logs that are older than 1 year.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Define an S3 Lifecycle configuration to delete the logs after 1 year.

B.

Create an AWS Lambda function to delete the logs after 1 year.

C.

Schedule a cron job on an Amazon EC2 instance to delete the logs after 1 year.

D.

Configure an AWS Step Functions state machine to delete the logs after 1 year.

Question 38

A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.

The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Database Migration Service (AWS DMS) to migrate the Hive metastore into Amazon S3. Configure AWS Glue Data Catalog to scan Amazon S3 to produce the data catalog.

B.

Configure a Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use AWS Glue Data Catalog to store the company's data catalog as an external data catalog.

C.

Configure an external Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use Amazon Aurora MySQL to store the company's data catalog.

D.

Configure a new Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use the new metastore as the company's data catalog.

Question 39

A company is building a data stream processing application. The application runs in an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. The application stores processed data in an Amazon DynamoDB table.

The company needs the application containers in the EKS cluster to have secure access to the DynamoDB table. The company does not want to embed AWS credentials in the containers.

Which solution will meet these requirements?

Options:

A.

Store the AWS credentials in an Amazon S3 bucket. Grant the EKS containers access to the S3 bucket to retrieve the credentials.

B.

Attach an IAM role to the EKS worker nodes. Grant the IAM role access to DynamoDB. Use the IAM role to set up IAM roles service accounts (IRSA) functionality.

C.

Create an IAM user that has an access key to access the DynamoDB table. Use environment variables in the EKS containers to store the IAM user access key data.

D.

Create an IAM user that has an access key to access the DynamoDB table. Use Kubernetes secrets that are mounted in a volume of the EKS cluster nodes to store the user access key data.

Question 40

A company generates reports from 30 tables in an Amazon Redshift data warehouse. The data source is an operational Amazon Aurora MySQL database that contains 100 tables. Currently, the company refreshes all data from Aurora to Redshift every hour, which causes delays in report generation.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)

Options:

A.

Use AWS Database Migration Service (AWS DMS) to create a replication task. Select only the required tables.

B.

Create a database in Amazon Redshift that uses the integration.

C.

Create a zero-ETL integration in Amazon Aurora. Select only the required tables.

D.

Use query editor v2 in Amazon Redshift to access the data in Aurora.

E.

Create an AWS Glue job to transfer each required table. Run an AWS Glue workflow to initiate the jobs every 5 minutes.