Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

AWS Certified Associate Data-Engineer-Associate Passing Score

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 29

A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.

The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the AWS Glue API to manually update the Data Catalog.

B.

Run an MSCK REPAIR TABLE command in Athena.

C.

Schedule an AWS Glue crawler to periodically update the Data Catalog.

D.

Run a REFRESH TABLE command in Athena.

Question 30

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Question 31

A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.

An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.

A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Configure the Amazon Redshift Federated Query feature to query live transactional data that is in the PostgreSQL database.

B.

Configure Amazon Redshift Spectrum to query live transactional data that is in the PostgreSQL database.

C.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 by using the UNLOAD command. Delete the old data from the Redshift cluster. Configure Amazon Redshift Spectrum to access historical data in Amazon S3.

D.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 Glacier Flexible Retrieval by using the UNLOAD command. Delete the old data from the Redshift duster. Configure Redshift Spectrum to access historical data from S3 Glacier Flexible Retrieval.

E.

Create a materialized view in Amazon Redshift that combines live, current, and historical data from different sources.

Question 32

Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.

Which solution will meet these requirements?

Options:

A.

Use the query editor v2 to schedule a COPY command to load new files into Amazon Redshift.

B.

Use the zero-ETL integration between Amazon Aurora and Amazon Redshift to load new files into Amazon Redshift.

C.

Use AWS Glue job bookmarks to extract, transform, and load (ETL) load new files into Amazon Redshift.

D.

Use S3 Event Notifications to invoke an AWS Lambda function that loads new files into Amazon Redshift.