A company uses Amazon S3 buckets, AWS Glue tables, and Amazon Athena as components of a data lake. Recently, the company expanded its sales range to multiple new states. The company wants to introduce state names as a new partition to the existing S3 bucket, which is currently partitioned by date.
The company needs to ensure that additional partitions will not disrupt daily synchronization between the AWS Glue Data Catalog and the S3 buckets.
Which solution will meet these requirements with the LEAST operational overhead?
A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.
An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.
If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.
Which solution will meet these requirements?
A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.
An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.
A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.
Which combination of steps will meet these requirements? (Select TWO.)
Files from multiple data sources arrive in an Amazon S3 bucket on a regular basis. A data engineer wants to ingest new files into Amazon Redshift in near real time when the new files arrive in the S3 bucket.
Which solution will meet these requirements?