Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

AWS Certified Associate Data-Engineer-Associate Full Course Free

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 41

A company receives call logs as Amazon S3 objects that contain sensitive customer information. The company must protect the S3 objects by using encryption. The company must also use encryption keys that only specific employees can access.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS CloudHSM cluster to store the encryption keys. Configure the process that writes to Amazon S3 to make calls to CloudHSM to encrypt and decrypt the objects. Deploy an IAM policy that restricts access to the CloudHSM cluster.

B.

Use server-side encryption with customer-provided keys (SSE-C) to encrypt the objects that contain customer information. Restrict access to the keys that encrypt the objects.

C.

Use server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the KMS keys that encrypt the objects.

D.

Use server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt the objects that contain customer information. Configure an IAM policy that restricts access to the Amazon S3 managed keys that encrypt the objects.

Question 42

A data engineer needs to optimize the performance of a data pipeline that handles retail orders. Data about the orders is ingested daily into an Amazon S3 bucket.

The data engineer runs queries once each week to extract metrics from the orders data based on the order date for multiple date ranges. The data engineer needs an optimization solution that ensures the query performance will not degrade when the volume of data increases.

Options:

A.

Partition the data based on order date. Use Amazon Athena to query the data.

B.

Partition the data based on order date. Use Amazon Redshift to query the data.

C.

Partition the data based on load date. Use Amazon EMR to query the data.

D.

Partition the data based on load date. Use Amazon Aurora to query the data.

Question 43

A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Confiqure an AWS Lambda function to load data from the S3 bucket into a pandas dataframe- Write a SQL SELECT statement on the dataframe to query the required column.

B.

Use S3 Select to write a SQL SELECT statement to retrieve the required column from the S3 objects.

C.

Prepare an AWS Glue DataBrew project to consume the S3 objects and to query the required column.

D.

Run an AWS Glue crawler on the S3 objects. Use a SQL SELECT statement in Amazon Athena to query the required column.

Question 44

A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.

A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.

How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?

Options:

A.

Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.

B.

Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.

C.

Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.

D.

Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.