A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.
A data engineer notices that one of the fields in the source data includes values that are in JSON format.
How should the data engineer load the JSON data into the data warehouse with the LEAST effort?
A company maintains a data warehouse in an on-premises Oracle database. The company wants to build a data lake on AWS. The company wants to load data warehouse tables into Amazon S3 and synchronize the tables with incremental data that arrives from the data warehouse every day.
Each table has a column that contains monotonically increasing values. The size of each table is less than 50 GB. The data warehouse tables are refreshed every night between 1 AM and 2 AM. A business intelligence team queries the tables between 10 AM and 8 PM every day.
Which solution will meet these requirements in the MOST operationally efficient way?
A company stores CSV files in an Amazon S3 bucket. A data engineer needs to process the data in the CSV files and store the processed data in a new S3 bucket.
The process needs to rename a column, remove specific columns, ignore the second row of each file, create a new column based on the values of the first row of the data, and filter the results by a numeric value of a column.
Which solution will meet these requirements with the LEAST development effort?
A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.
Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.
Which solution will meet these requirements MOST cost-effectively?