New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
218
Last Updated:
Jan 17, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Buy Now
Question 2

A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.

Options:

A.

Use Amazon EMR to run Apache Hive queries on the raw log files in the S3 bucket to extract the specified fields. Store the output as ORC files in the original S3 bucket.

B.

Use AWS Step Functions to orchestrate a series of AWS Batch jobs to parse the raw log files. Load the specified fields into an Amazon RDS for PostgreSQL database.

C.

Use an AWS Glue crawler to parse the raw log data in the S3 bucket and to generate a schema. Use AWS Glue ETL jobs to extract and transform the data and to load it into Amazon Redshift.

D.

Use AWS Glue DataBrew to run AWS Glue ETL jobs on a schedule to extract the specified fields from the raw log files in the S3 bucket. Load the data into partitioned tables in Amazon Redshift.

Question 3

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

Options:

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.