Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
231
Last Updated:
Jan 27, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A security company stores IoT data that is in JSON format in an Amazon S3 bucket. The data structure can change when the company upgrades the IoT devices. The company wants to create a data catalog that includes the IoT data. The company's analytics department will use the data catalog to index the data.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create a new AWS Glue workload to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.

B.

Create an Amazon Redshift provisioned cluster. Create an Amazon Redshift Spectrum database for the analytics department to explore the data that is in Amazon S3. Create Redshift stored procedures to load the data into Amazon Redshift.

C.

Create an Amazon Athena workgroup. Explore the data that is in Amazon S3 by using Apache Spark through Athena. Provide the Athena workgroup schema and tables to the analytics department.

D.

Create an AWS Glue Data Catalog. Configure an AWS Glue Schema Registry. Create AWS Lambda user defined functions (UDFs) by using the Amazon Redshift Data API. Create an AWS Step Functions job to orchestrate the ingestion of the data that the analytics department will use into Amazon Redshift Serverless.

Buy Now
Question 2

A company hosts its applications on Amazon EC2 instances. The company must use SSL/TLS connections that encrypt data in transit to communicate securely with AWS infrastructure that is managed by a customer.

A data engineer needs to implement a solution to simplify the generation, distribution, and rotation of digital certificates. The solution must automatically renew and deploy SSL/TLS certificates.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Store self-managed certificates on the EC2 instances.

B.

Use AWS Certificate Manager (ACM).

C.

Implement custom automation scripts in AWS Secrets Manager.

D.

Use Amazon Elastic Container Service (Amazon ECS) Service Connect.

Question 3

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.