Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
255
Last Updated:
Feb 22, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

Buy Now
Question 2

A company implements a data mesh that has a central governance account. The company needs to catalog all data in the governance account. The governance account uses AWS Lake Formation to centrally share data and grant access permissions.

The company has created a new data product that includes a group of Amazon Redshift Serverless tables. A data engineer needs to share the data product with a marketing team. The marketing team must have access to only a subset of columns. The data engineer needs to share the same data product with a compliance team. The compliance team must have access to a different subset of columns than the marketing team needs access to.

Which combination of steps should the data engineer take to meet these requirements? (Select TWO.)

Options:

A.

Create views of the tables that need to be shared. Include only the required columns.

B.

Create an Amazon Redshift data than that includes the tables that need to be shared.

C.

Create an Amazon Redshift managed VPC endpoint in the marketing team's account. Grant the marketing team access to the views.

D.

Share the Amazon Redshift data share to the Lake Formation catalog in the governance account.

E.

Share the Amazon Redshift data share to the Amazon Redshift Serverless workgroup in the marketing team's account.

Question 3

A company stores a large dataset in an Amazon S3 bucket. A data engineer frequently runs complex queries on the dataset by using Amazon Athena. The data engineer needs to optimize query performance and optimize costs for queries that are run multiple times with the same parameters.

Which solution will meet these requirements?

Options:

A.

Convert the dataset to JSON format before running Athena queries.

B.

Use Amazon EMR to pre-process the data before running Athena queries.

C.

Configure query result reuse settings in the Athena workgroup.

D.

Use Amazon Redshift Spectrum to query the data in Amazon S3.