Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
241
Last Updated:
Feb 13, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A gaming company uses AWS Glue to perform read and write operations on Apache Iceberg tables for real-time streaming data. The data in the Iceberg tables is stored in Apache Parquet format. The company is experiencing slow query performance.

Which solutions will improve query performance? (Select TWO)

Options:

A.

Use AWS Glue Data Catalog to generate column-level statistics for the Iceberg tables on a schedule.

B.

Use AWS Glue Data Catalog to automatically compact the Iceberg tables.

C.

Use AWS Glue Data Catalog to automatically optimize indexes for the Iceberg tables.

D.

Use AWS Glue Data Catalog to enable copy-on-write for the Iceberg tables.

E.

Use AWS Glue Data Catalog to generate views for the Iceberg tables.

Buy Now
Question 2

A retail company needs to implement a solution to capture data updates from multiple Amazon Aurora MySQL databases. The company needs to make the updates available for analytics in near real time. The solution must be serverless and require minimal maintenance.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Set up AWS Database Migration Service (AWS DMS) tasks that perform schema conversions for each database. Load the changes into Amazon Redshift Serverless.

B.

Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) Connect with Debezium connectors to load data into Amazon Redshift Serverless.

C.

Use AWS Database Migration Service (AWS DMS) to set up binary log replication to Amazon Kinesis Data Streams. Load the data into Amazon Redshift Serverless after schema conversion.

D.

Use Aurora zero-ETL integrations with Amazon Redshift Serverless for each database to load Aurora MySQL changes in Amazon Redshift Serverless.

Question 3

A company stores a 100 MB dataset in an Amazon S3 bucket as an Apache Parquet file. A data engineer needs to profile the data before performing data preparation steps on the data.

Which solution will meet this requirement in the MOST operationally efficient way?

Options:

A.

Create a profile job on the dataset in AWS Glue DataBrew. Review the profile job results.

B.

Stream the data into Amazon Managed Service for Apache Flink for SQL queries. Use the Apache Flink dashboard to profile the data.

C.

Ingest the data into Amazon Redshift Spectrum. Use SQL queries to profile the data.

D.

Load the data into an Amazon QuickSight dataset. Build a topic to profile the data with questions.