Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
241
Last Updated:
Feb 15, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.

The company wants to optimize costs for data storage and retrieval.

Which solution will meet this requirement?

Options:

A.

Transition the data to Amazon S3 Glacier Flexible Retrieval.

B.

Transition the data from Amazon S3 to an Amazon Aurora cluster.

C.

Configure AWS Glue ETL to transform the incoming data to Apache Parquet format.

D.

Configure AWS Glue ETL to use Amazon EMR to process incoming data in parallel.

Buy Now
Question 2

A company wants to use Apache Spark jobs that run on an Amazon EMR cluster to process streaming data. The Spark jobs will transform and store the data in an Amazon S3 bucket. The company will use Amazon Athena to perform analysis.

The company needs to optimize the data format for analytical queries.

Which solutions will meet these requirements with the SHORTEST query times? (Select TWO.)

Options:

A.

Use Avro format. Use AWS Glue Data Catalog to track schema changes.

B.

Use ORC format. Use AWS Glue Data Catalog to track schema changes.

C.

Use Apache Parquet format. Use an external Amazon DynamoDB table to track schema changes.

D.

Use Apache Parquet format. Use AWS Glue Data Catalog to track schema changes.

E.

Use ORC format. Store schema definitions in separate files in Amazon S3.

Question 3

An ecommerce company collects daily customer transaction logs in CSV format and stores the logs in Amazon S3. The company uses Amazon Athena to scan a subset of attributes from the logs on the same day the company receives each log.

Query times are increasing because of increasing transaction volume. The company wants to improve query performance.

Which solution will meet these requirements with the SHORTEST query times?

Options:

A.

Convert the CSV logs into multiple ORC files for better parallelism in Athena. Partition by date in Amazon S3. Use columnar pushdown filters.

B.

Convert the CSV logs to JSON. Partition by date in Amazon S3. Use Athena with dynamic filtering to reduce data scans.

C.

Convert the CSV logs to Avro. Partition by date in Amazon S3. Use Athena with projection-based partitioning.

D.

Convert the CSV logs to a single Apache Parquet file for each day. Partition the data by date in Amazon S3. Use Athena with predicate pushdown filters.