Big Halloween Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
190
Last Updated:
Nov 3, 2025
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Buy Now
Question 2

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Question 3

A company uses Amazon Athena to run SQL queries for extract, transform, and load (ETL) tasks by using Create Table As Select (CTAS). The company must use Apache Spark instead of SQL to generate analytics.

Which solution will give the company the ability to use Spark to access Athena?

Options:

A.

Athena query settings

B.

Athena workgroup

C.

Athena data source

D.

Athena query editor