New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services Data-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Data-Engineer-Associate
Exam Name:
AWS Certified Data Engineer - Associate (DEA-C01)
Questions:
218
Last Updated:
Jan 16, 2026
Exam Status:
Stable
Amazon Web Services Data-Engineer-Associate

Data-Engineer-Associate: AWS Certified Data Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services Data-Engineer-Associate (AWS Certified Data Engineer - Associate (DEA-C01)) exam? Download the most recent Amazon Web Services Data-Engineer-Associate braindumps with answers that are 100% real. After downloading the Amazon Web Services Data-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services Data-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services Data-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Data Engineer - Associate (DEA-C01)) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Data-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services Data-Engineer-Associate practice exam demo.

AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Question 1

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

Options:

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Buy Now
Question 2

A data engineer is processing a large amount of log data from web servers. The data is stored in an Amazon S3 bucket. The data engineer uses AWS services to process the data every day. The data engineer needs to extract specific fields from the raw log data and load the data into a data warehouse for analysis.

Options:

A.

Use Amazon EMR to run Apache Hive queries on the raw log files in the S3 bucket to extract the specified fields. Store the output as ORC files in the original S3 bucket.

B.

Use AWS Step Functions to orchestrate a series of AWS Batch jobs to parse the raw log files. Load the specified fields into an Amazon RDS for PostgreSQL database.

C.

Use an AWS Glue crawler to parse the raw log data in the S3 bucket and to generate a schema. Use AWS Glue ETL jobs to extract and transform the data and to load it into Amazon Redshift.

D.

Use AWS Glue DataBrew to run AWS Glue ETL jobs on a schedule to extract the specified fields from the raw log files in the S3 bucket. Load the data into partitioned tables in Amazon Redshift.

Question 3

A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an external schema that maps to the MSK cluster. Create a materialized view that references the external schema to consume the streaming data from the MSK topic.

B.

Develop an AWS Glue streaming extract, transform, and load (ETL) job to process the incoming data from Amazon MSK. Load the data into Amazon S3. Use Amazon Redshift Spectrum to read the data from Amazon S3.

C.

Create an external schema that maps to the streaming data source. Create a new Amazon Redshift table that references the external schema.

D.

Create an Amazon S3 bucket. Ingest the data from Amazon MSK. Create an event-driven AWS Lambda function to load the data from the S3 bucket to a new Amazon Redshift table.