Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Vce Professional-Machine-Learning-Engineer Questions Latest

Google Professional Machine Learning Engineer Questions and Answers

Question 13

You need to develop an image classification model by using a large dataset that contains labeled images in a Cloud Storage Bucket. What should you do?

Options:

A.

Use Vertex Al Pipelines with the Kubeflow Pipelines SDK to create a pipeline that reads the images from Cloud Storage and trains the model.

B.

Use Vertex Al Pipelines with TensorFlow Extended (TFX) to create a pipeline that reads the images from Cloud Storage and trams the model.

C.

Import the labeled images as a managed dataset in Vertex Al: and use AutoML to tram the model.

D.

Convert the image dataset to a tabular format using Dataflow Load the data into BigQuery and use BigQuery ML to tram the model.

Question 14

You need to build an ML model for a social media application to predict whether a user’s submitted profile photo meets the requirements. The application will inform the user if the picture meets the requirements. How should you build a model to ensure that the application does not falsely accept a non-compliant picture?

Options:

A.

Use AutoML to optimize the model’s recall in order to minimize false negatives.

B.

Use AutoML to optimize the model’s F1 score in order to balance the accuracy of false positives and false negatives.

C.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that meet the profile photo requirements.

D.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that do not meet the profile photo requirements.

Question 15

You are an ML engineer at a regulated insurance company. You are asked to develop an insurance approval model that accepts or rejects insurance applications from potential customers. What factors should you consider before building the model?

Options:

A.

Redaction, reproducibility, and explainability

B.

Traceability, reproducibility, and explainability

C.

Federated learning, reproducibility, and explainability

D.

Differential privacy federated learning, and explainability

Question 16

You work for a pet food company that manages an online forum Customers upload photos of their pets on the forum to share with others About 20 photos are uploaded daily You want to automatically and in near real time detect whether each uploaded photo has an animal You want to prioritize time and minimize cost of your application development and deployment What should you do?

Options:

A.

Send user-submitted images to the Cloud Vision API Use object localization to identify all objects in the image and compare the results against a list of animals.

B.

Download an object detection model from TensorFlow Hub. Deploy the model to a Vertex Al endpoint. Send new user-submitted images to the model endpoint to classify whether each photo has an animal.

C.

Manually label previously submitted images with bounding boxes around any animals Build an AutoML object detection model by using Vertex Al Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to detect whether each photo has an animal.

D.

Manually label previously submitted images as having animals or not Create an image dataset on Vertex Al Train a classification model by using Vertex AutoML to distinguish the two classes Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to classify whether each photo has an animal.