Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Google Professional-Machine-Learning-Engineer Actual Questions

Google Professional Machine Learning Engineer Questions and Answers

Question 53

You are training an ML model on a large dataset. You are using a TPU to accelerate the training process You notice that the training process is taking longer than expected. You discover that the TPU is not reaching its full capacity. What should you do?

Options:

A.

Increase the learning rate

B.

Increase the number of epochs

C.

Decrease the learning rate

D.

Increase the batch size

Question 54

You are deploying a new version of a model to a production Vertex Al endpoint that is serving traffic You plan to direct all user traffic to the new model You need to deploy the model with minimal disruption to your application What should you do?

Options:

A.

1 Create a new endpoint.

2 Create a new model Set it as the default version Upload the model to Vertex Al Model Registry.

3. Deploy the new model to the new endpoint.

4 Update Cloud DNS to point to the new endpoint

B.

1. Create a new endpoint.

2. Create a new model Set the parentModel parameter to the model ID of the currently deployed model and set it as the default version Upload the model to Vertex Al Model Registry

3. Deploy the new model to the new endpoint and set the new model to 100% of the traffic

C.

1 Create a new model Set the parentModel parameter to the model ID of the currently deployed model Upload the model to Vertex Al Model Registry.

2 Deploy the new model to the existing endpoint and set the new model to 100% of the traffic.

D.

1, Create a new model Set it as the default version Upload the model to Vertex Al Model Registry

2 Deploy the new model to the existing endpoint

Question 55

While running a model training pipeline on Vertex Al, you discover that the evaluation step is failing because of an out-of-memory error. You are currently using TensorFlow Model Analysis (TFMA) with a standard Evaluator TensorFlow Extended (TFX) pipeline component for the evaluation step. You want to stabilize the pipeline without downgrading the evaluation quality while minimizing infrastructure overhead. What should you do?

Options:

A.

Add tfma.MetricsSpec () to limit the number of metrics in the evaluation step.

B.

Migrate your pipeline to Kubeflow hosted on Google Kubernetes Engine, and specify the appropriate node parameters for the evaluation step.

C.

Include the flag -runner=DataflowRunner in beam_pipeline_args to run the evaluation step on Dataflow.

D.

Move the evaluation step out of your pipeline and run it on custom Compute Engine VMs with sufficient memory.

Question 56

You are tasked with building an MLOps pipeline to retrain tree-based models in production. The pipeline will include components related to data ingestion, data processing, model training, model evaluation, and model deployment. Your organization primarily uses PySpark-based workloads for data preprocessing. You want to minimize infrastructure management effort. How should you set up the pipeline?

Options:

A.

Set up a TensorFlow Extended (TFX) pipeline on Vertex Al Pipelines to orchestrate the MLOps pipeline. Write a custom component for the PySpark-based workloads on Dataproc.

B.

Set up a Vertex Al Pipelines to orchestrate the MLOps pipeline. Use the predefined Dataproc component for the PySpark-based workloads.

C.

Set up Cloud Composer to orchestrate the MLOps pipeline. Use Dataproc workflow templates for the PySpark-based workloads in Cloud Composer.

D.

Set up Kubeflow Pipelines on Google Kubernetes Engine to orchestrate the MLOps pipeline. Write a custom component for the PySpark-based workloads on Dataproc.