Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Professional-Machine-Learning-Engineer Exam Dumps : Google Professional Machine Learning Engineer

PDF
Professional-Machine-Learning-Engineer pdf
 Real Exam Questions and Answer
 Last Update: Jan 22, 2026
 Question and Answers: 285 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$29.75  $84.99
Professional-Machine-Learning-Engineer exam
PDF + Testing Engine
Professional-Machine-Learning-Engineer PDF + engine
 Both PDF & Practice Software
 Last Update: Jan 22, 2026
 Question and Answers: 285
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$47.25  $134.99
Testing Engine
Professional-Machine-Learning-Engineer Engine
 Desktop Based Application
 Last Update: Jan 22, 2026
 Question and Answers: 285
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$35  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

Google Professional-Machine-Learning-Engineer Exam Dumps FAQs

Q. # 1: What is the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam is a certification test designed to assess an individuals ability to design, build, and deploy machine learning models using Google Cloud technologies. It evaluates skills in model architecture, data pipeline creation, and metrics interpretation.

Q. # 2: Who should take the Google Professional Machine Learning Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam is ideal for experienced machine learning engineers who design, build, and productionize ML models on Google Cloud Platform (GCP). It validates your ability to solve real-world business problems using Google's cutting-edge machine learning tools and workflows.

Q. # 3: What topics are covered in the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam covers topics such as ML model architecture, data engineering, MLOps, responsible AI, and the use of Google Cloud tools like BigQuery ML and Vertex AI.

Q. # 4: How many questions are on the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam consists of 50-60 multiple-choice and multiple-select questions.

Q. # 5: What is the duration of the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam duration is two hours.

Q. # 6: What is the passing score for the Google Professional-Machine-Learning-Engineer Exam?

The passing score for the Google Professional-Machine-Learning-Engineer Exam is 70%.

Q. # 7: Is there a success guarantee with CertsTopics Professional-Machine-Learning-Engineer study materials?

CertsTopics offers a success guarantee, meaning that if you do not pass the Machine Learning Engineer certification exam after using Professional-Machine-Learning-Engineer study materials, you may be eligible for a refund or additional support.

Q. # 8: Are there any discounts available for CertsTopics Professional-Machine-Learning-Engineer study materials?

CertsTopics occasionally offers promotions and discounts. Check our website for the latest deals and offers.

Q. # 9: Are the Professional-Machine-Learning-Engineer exam questions from CertsTopics updated regularly?

Yes, CertsTopics regularly updates its Professional-Machine-Learning-Engineer exam questions to reflect the latest exam changes and industry trends, ensuring that you have access to the most current information.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You are developing a model to help your company create more targeted online advertising campaigns. You need to create a dataset that you will use to train the model. You want to avoid creating or reinforcing unfair bias in the model. What should you do?

Choose 2 answers

Options:

A.

Include a comprehensive set of demographic features.

B.

include only the demographic groups that most frequently interact with advertisements.

C.

Collect a random sample of production traffic to build the training dataset.

D.

Collect a stratified sample of production traffic to build the training dataset.

E.

Conduct fairness tests across sensitive categories and demographics on the trained model.

Buy Now
Question 2

You work on a data science team at a bank and are creating an ML model to predict loan default risk. You have collected and cleaned hundreds of millions of records worth of training data in a BigQuery table, and you now want to develop and compare multiple models on this data using TensorFlow and Vertex AI. You want to minimize any bottlenecks during the data ingestion state while considering scalability. What should you do?

Options:

A.

Use the BigQuery client library to load data into a dataframe, and use tf.data.Dataset.from_tensor_slices() to read it.

B.

Export data to CSV files in Cloud Storage, and use tf.data.TextLineDataset() to read them.

C.

Convert the data into TFRecords, and use tf.data.TFRecordDataset() to read them.

D.

Use TensorFlow I/O’s BigQuery Reader to directly read the data.

Question 3

You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?

Options:

A.

Use scikit-learn to build a tree-based model, and use SHAP values to explain the model output.

B.

Use scikit-lean to build a tree-based model, and use partial dependence plots (PDP) to explain the model output.

C.

Use TensorFlow to create a deep learning-based model and use Integrated Gradients to explain the model

output.

D.

Use TensorFlow to create a deep learning-based model and use the sampled Shapley method to explain the model output.