Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Professional-Machine-Learning-Engineer Exam Dumps : Google Professional Machine Learning Engineer

PDF
Professional-Machine-Learning-Engineer pdf
 Real Exam Questions and Answer
 Last Update: Nov 5, 2025
 Question and Answers: 285 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$29.75  $84.99
Professional-Machine-Learning-Engineer exam
PDF + Testing Engine
Professional-Machine-Learning-Engineer PDF + engine
 Both PDF & Practice Software
 Last Update: Nov 5, 2025
 Question and Answers: 285
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$47.25  $134.99
Testing Engine
Professional-Machine-Learning-Engineer Engine
 Desktop Based Application
 Last Update: Nov 5, 2025
 Question and Answers: 285
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$35  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

Google Professional-Machine-Learning-Engineer Exam Dumps FAQs

Q. # 1: What is the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam is a certification test designed to assess an individuals ability to design, build, and deploy machine learning models using Google Cloud technologies. It evaluates skills in model architecture, data pipeline creation, and metrics interpretation.

Q. # 2: Who should take the Google Professional Machine Learning Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam is ideal for experienced machine learning engineers who design, build, and productionize ML models on Google Cloud Platform (GCP). It validates your ability to solve real-world business problems using Google's cutting-edge machine learning tools and workflows.

Q. # 3: What topics are covered in the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam covers topics such as ML model architecture, data engineering, MLOps, responsible AI, and the use of Google Cloud tools like BigQuery ML and Vertex AI.

Q. # 4: How many questions are on the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam consists of 50-60 multiple-choice and multiple-select questions.

Q. # 5: What is the duration of the Google Professional-Machine-Learning-Engineer Exam?

The Google Professional-Machine-Learning-Engineer Exam duration is two hours.

Q. # 6: What is the passing score for the Google Professional-Machine-Learning-Engineer Exam?

The passing score for the Google Professional-Machine-Learning-Engineer Exam is 70%.

Q. # 7: Is there a success guarantee with CertsTopics Professional-Machine-Learning-Engineer study materials?

CertsTopics offers a success guarantee, meaning that if you do not pass the Machine Learning Engineer certification exam after using Professional-Machine-Learning-Engineer study materials, you may be eligible for a refund or additional support.

Q. # 8: Are there any discounts available for CertsTopics Professional-Machine-Learning-Engineer study materials?

CertsTopics occasionally offers promotions and discounts. Check our website for the latest deals and offers.

Q. # 9: Are the Professional-Machine-Learning-Engineer exam questions from CertsTopics updated regularly?

Yes, CertsTopics regularly updates its Professional-Machine-Learning-Engineer exam questions to reflect the latest exam changes and industry trends, ensuring that you have access to the most current information.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You are developing a model to help your company create more targeted online advertising campaigns. You need to create a dataset that you will use to train the model. You want to avoid creating or reinforcing unfair bias in the model. What should you do?

Choose 2 answers

Options:

A.

Include a comprehensive set of demographic features.

B.

include only the demographic groups that most frequently interact with advertisements.

C.

Collect a random sample of production traffic to build the training dataset.

D.

Collect a stratified sample of production traffic to build the training dataset.

E.

Conduct fairness tests across sensitive categories and demographics on the trained model.

Buy Now
Question 2

You work for a company that sells corporate electronic products to thousands of businesses worldwide. Your company stores historical customer data in BigQuery. You need to build a model that predicts customer lifetime value over the next three years. You want to use the simplest approach to build the model. What should you do?

Options:

A.

Access BigQuery Studio in the Google Cloud console. Run the create model statement in the SQL editor to create an ARIMA model.

B.

Create a Vertex Al Workbench notebook. Use IPython magic to run the create model statement to create an ARIMA model.

C.

Access BigQuery Studio in the Google Cloud console. Run the create model statement in the SQL editor to create an AutoML regression model.

D.

Create a Vertex Al Workbench notebook. Use IPython magic to run the create model statement to create an AutoML regression model.

Question 3

You work for a biotech startup that is experimenting with deep learning ML models based on properties of biological organisms. Your team frequently works on early-stage experiments with new architectures of ML models, and writes custom TensorFlow ops in C++. You train your models on large datasets and large batch sizes. Your typical batch size has 1024 examples, and each example is about 1 MB in size. The average size of a network with all weights and embeddings is 20 GB. What hardware should you choose for your models?

Options:

A.

A cluster with 2 n1-highcpu-64 machines, each with 8 NVIDIA Tesla V100 GPUs (128 GB GPU memory in total), and a n1-highcpu-64 machine with 64 vCPUs and 58 GB RAM

B.

A cluster with 2 a2-megagpu-16g machines, each with 16 NVIDIA Tesla A100 GPUs (640 GB GPU memory in total), 96 vCPUs, and 1.4 TB RAM

C.

A cluster with an n1-highcpu-64 machine with a v2-8 TPU and 64 GB RAM

D.

A cluster with 4 n1-highcpu-96 machines, each with 96 vCPUs and 86 GB RAM