Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Jan 29, 2026
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You are building a MLOps platform to automate your company's ML experiments and model retraining. You need to organize the artifacts for dozens of pipelines How should you store the pipelines' artifacts'?

Options:

A.

Store parameters in Cloud SQL and store the models' source code and binaries in GitHub

B.

Store parameters in Cloud SQL store the models' source code in GitHub, and store the models' binaries in Cloud Storage.

C.

Store parameters in Vertex ML Metadata store the models' source code in GitHub and store the models' binaries in Cloud Storage.

D.

Store parameters in Vertex ML Metadata and store the models source code and binaries in GitHub.

Buy Now
Question 2

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?

Options:

A.

1. HTTP requests are sent by the sensors to your ML model, which is deployed as a microservice and exposes a REST API for prediction

2. Your application queries a Vertex AI endpoint where you deployed your model.

3. Responses are received by the caller application as soon as the model produces the prediction.

B.

1. Events are sent by the sensors to Pub/Sub, consumed in real time, and processed by a Dataflow stream processing pipeline.

2. The pipeline invokes the model for prediction and sends the predictions to another Pub/Sub topic.

3. Pub/Sub messages containing predictions are then consumed by a downstream system for monitoring.

C.

1. Export your data to Cloud Storage using Dataflow.

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into Cloud SQL.

D.

1. Export the data to Cloud Storage using the BigQuery command-line tool

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into BigQuery.

Question 3

While running a model training pipeline on Vertex Al, you discover that the evaluation step is failing because of an out-of-memory error. You are currently using TensorFlow Model Analysis (TFMA) with a standard Evaluator TensorFlow Extended (TFX) pipeline component for the evaluation step. You want to stabilize the pipeline without downgrading the evaluation quality while minimizing infrastructure overhead. What should you do?

Options:

A.

Add tfma.MetricsSpec () to limit the number of metrics in the evaluation step.

B.

Migrate your pipeline to Kubeflow hosted on Google Kubernetes Engine, and specify the appropriate node parameters for the evaluation step.

C.

Include the flag -runner=DataflowRunner in beam_pipeline_args to run the evaluation step on Dataflow.

D.

Move the evaluation step out of your pipeline and run it on custom Compute Engine VMs with sufficient memory.