Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Aug 31, 2025
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You have developed a BigQuery ML model that predicts customer churn and deployed the model to Vertex Al Endpoints. You want to automate the retraining of your model by using minimal additional code when model feature values change. You also want to minimize the number of times that your model is retrained to reduce training costs. What should you do?

Options:

A.

1. Enable request-response logging on Vertex Al Endpoints.

2 Schedule a TensorFlow Data Validation job to monitor prediction drift

3. Execute model retraining if there is significant distance between the distributions.

B.

1. Enable request-response logging on Vertex Al Endpoints

2. Schedule a TensorFlow Data Validation job to monitor training/serving skew

3. Execute model retraining if there is significant distance between the distributions

C.

1 Create a Vertex Al Model Monitoring job configured to monitor prediction drift.

2. Configure alert monitoring to publish a message to a Pub/Sub queue when a monitonng alert is detected.

3. Use a Cloud Function to monitor the Pub/Sub queue, and trigger retraining in BigQuery

D.

1. Create a Vertex Al Model Monitoring job configured to monitor training/serving skew

2. Configure alert monitoring to publish a message to a Pub/Sub queue when a monitoring alert is detected

3. Use a Cloud Function to monitor the Pub/Sub queue, and trigger retraining in BigQuery.

Buy Now
Question 2

You have developed a fraud detection model for a large financial institution using Vertex AI. The model achieves high accuracy, but stakeholders are concerned about potential bias based on customer demographics. You have been asked to provide insights into the model's decision-making process and identify any fairness issues. What should you do?

Options:

A.

Enable Vertex AI Model Monitoring to detect training-serving skew. Configure an alert to send an email when the skew or drift for a model’s feature exceeds a predefined threshold. Retrain the model by appending new data to existing training data.

B.

Compile a dataset of unfair predictions. Use Vertex AI Vector Search to identify similar data points in the model's predictions. Report these data points to the stakeholders.

C.

Use feature attribution in Vertex AI to analyze model predictions and the impact of each feature on the model's predictions.

D.

Create feature groups using Vertex AI Feature Store to segregate customer demographic features and non-demographic features. Retrain the model using only non-demographic features.

Question 3

You are going to train a DNN regression model with Keras APIs using this code:

How many trainable weights does your model have? (The arithmetic below is correct.)

Options:

A.

501*256+257*128+2 = 161154

B.

500*256+256*128+128*2 = 161024

C.

501*256+257*128+128*2=161408

D.

500*256*0 25+256*128*0 25+128*2 = 40448