Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Feb 10, 2026
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You developed a Vertex Al ML pipeline that consists of preprocessing and training steps and each set of steps runs on a separate custom Docker image Your organization uses GitHub and GitHub Actions as CI/CD to run unit and integration tests You need to automate the model retraining workflow so that it can be initiated both manually and when a new version of the code is merged in the main branch You want to minimize the steps required to build the workflow while also allowing for maximum flexibility How should you configure the CI/CD workflow?

Options:

A.

Trigger a Cloud Build workflow to run tests build custom Docker images, push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

B.

Trigger GitHub Actions to run the tests launch a job on Cloud Run to build custom Docker images push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

C.

Trigger GitHub Actions to run the tests build custom Docker images push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

D.

Trigger GitHub Actions to run the tests launch a Cloud Build workflow to build custom Dicker images, push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

Buy Now
Question 2

You were asked to investigate failures of a production line component based on sensor readings. After receiving the dataset, you discover that less than 1% of the readings are positive examples representing failure incidents. You have tried to train several classification models, but none of them converge. How should you resolve the class imbalance problem?

Options:

A.

Use the class distribution to generate 10% positive examples

B.

Use a convolutional neural network with max pooling and softmax activation

C.

Downsample the data with upweighting to create a sample with 10% positive examples

D.

Remove negative examples until the numbers of positive and negative examples are equal

Question 3

You work at a bank You have a custom tabular ML model that was provided by the bank's vendor. The training data is not available due to its sensitivity. The model is packaged as a Vertex Al Model serving container which accepts a string as input for each prediction instance. In each string the feature values are separated by commas. You want to deploy this model to production for online predictions, and monitor the feature distribution over time with minimal effort What should you do?

Options:

A.

1 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Ai endpoint.

2. Create a Vertex Al Model Monitoring job with feature drift detection as the monitoring objective, and provide an instance schema.

B.

1 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.

2 Create a Vertex Al Model Monitoring job with feature skew detection as the monitoring objective and provide an instance schema.

C.

1 Refactor the serving container to accept key-value pairs as input format.

2. Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.

3. Create a Vertex Al Model Monitoring job with feature drift detection as the monitoring objective.

D.

1 Refactor the serving container to accept key-value pairs as input format.

2 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.

3. Create a Vertex Al Model Monitoring job with feature skew detection as the monitoring objective.