Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Feb 14, 2026
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?

Options:

A.

Convert the model to a Keras model, and run a Keras Tuner job.

B.

Run a hyperparameter tuning job on AI Platform using custom containers.

C.

Create a Kuberflow Pipelines instance, and run a hyperparameter tuning job on Katib.

D.

Convert the model to a TensorFlow model, and run a hyperparameter tuning job on AI Platform.

Buy Now
Question 2

You are deploying a new version of a model to a production Vertex Al endpoint that is serving traffic You plan to direct all user traffic to the new model You need to deploy the model with minimal disruption to your application What should you do?

Options:

A.

1 Create a new endpoint.

2 Create a new model Set it as the default version Upload the model to Vertex Al Model Registry.

3. Deploy the new model to the new endpoint.

4 Update Cloud DNS to point to the new endpoint

B.

1. Create a new endpoint.

2. Create a new model Set the parentModel parameter to the model ID of the currently deployed model and set it as the default version Upload the model to Vertex Al Model Registry

3. Deploy the new model to the new endpoint and set the new model to 100% of the traffic

C.

1 Create a new model Set the parentModel parameter to the model ID of the currently deployed model Upload the model to Vertex Al Model Registry.

2 Deploy the new model to the existing endpoint and set the new model to 100% of the traffic.

D.

1, Create a new model Set it as the default version Upload the model to Vertex Al Model Registry

2 Deploy the new model to the existing endpoint

Question 3

You recently used XGBoost to train a model in Python that will be used for online serving Your model prediction service will be called by a backend service implemented in Golang running on a Google Kubemetes Engine (GKE) cluster Your model requires pre and postprocessing steps You need to implement the processing steps so that they run at serving time You want to minimize code changes and infrastructure maintenance and deploy your model into production as quickly as possible. What should you do?

Options:

A.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server and deploy it on your organization's GKE cluster.

B.

Use FastAPI to implement an HTTP server Create a Docker image that runs your HTTP server Upload the image to Vertex Al Model Registry and deploy it to a Vertex Al endpoint.

C.

Use the Predictor interface to implement a custom prediction routine Build the custom contain upload the container to Vertex Al Model Registry, and deploy it to a Vertex Al endpoint.

D.

Use the XGBoost prebuilt serving container when importing the trained model into Vertex Al Deploy the model to a Vertex Al endpoint Work with the backend engineers to implement the pre- and postprocessing steps in the Golang backend service.