New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Jan 7, 2026
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You work for an auto insurance company. You are preparing a proof-of-concept ML application that uses images of damaged vehicles to infer damaged parts Your team has assembled a set of annotated images from damage claim documents in the company's database The annotations associated with each image consist of a bounding box for each identified damaged part and the part name. You have been given a sufficient budget to tram models on Google Cloud You need to quickly create an initial model What should you do?

Options:

A.

Download a pre-trained object detection mode! from TensorFlow Hub Fine-tune the model in Vertex Al Workbench by using the annotated image data.

B.

Train an object detection model in AutoML by using the annotated image data.

C.

Create a pipeline in Vertex Al Pipelines and configure the AutoMLTrainingJobRunOp compon it to train a custom object detection model by using the annotated image data.

D.

Train an object detection model in Vertex Al custom training by using the annotated image data.

Buy Now
Question 2

You have trained a DNN regressor with TensorFlow to predict housing prices using a set of predictive features. Your default precision is tf.float64, and you use a standard TensorFlow estimator;

estimator = tf.estimator.DNNRegressor(

feature_columns=[YOUR_LIST_OF_FEATURES],

hidden_units-[1024, 512, 256],

dropout=None)

Your model performs well, but Just before deploying it to production, you discover that your current serving latency is 10ms @ 90 percentile and you currently serve on CPUs. Your production requirements expect a model latency of 8ms @ 90 percentile. You are willing to accept a small decrease in performance in order to reach the latency requirement Therefore your plan is to improve latency while evaluating how much the model's prediction decreases. What should you first try to quickly lower the serving latency?

Options:

A.

Increase the dropout rate to 0.8 in_PREDICT mode by adjusting the TensorFlow Serving parameters

B.

Increase the dropout rate to 0.8 and retrain your model.

C.

Switch from CPU to GPU serving

D.

Apply quantization to your SavedModel by reducing the floating point precision to tf.float16.

Question 3

You need to deploy a scikit-learn classification model to production. The model must be able to serve requests 24/7 and you expect millions of requests per second to the production application from 8 am to 7 pm. You need to minimize the cost of deployment What should you do?

Options:

A.

Deploy an online Vertex Al prediction endpoint Set the max replica count to 1

B.

Deploy an online Vertex Al prediction endpoint Set the max replica count to 100

C.

Deploy an online Vertex Al prediction endpoint with one GPU per replica Set the max replica count to 1.

D.

Deploy an online Vertex Al prediction endpoint with one GPU per replica Set the max replica count to 100.