Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Sep 18, 2025
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You recently built the first version of an image segmentation model for a self-driving car. After deploying the model, you observe a decrease in the area under the curve (AUC) metric. When analyzing the video recordings, you also discover that the model fails in highly congested traffic but works as expected when there is less traffic. What is the most likely reason for this result?

Options:

A.

The model is overfitting in areas with less traffic and underfitting in areas with more traffic.

B.

AUC is not the correct metric to evaluate this classification model.

C.

Too much data representing congested areas was used for model training.

D.

Gradients become small and vanish while backpropagating from the output to input nodes.

Buy Now
Question 2

You work for a biotech startup that is experimenting with deep learning ML models based on properties of biological organisms. Your team frequently works on early-stage experiments with new architectures of ML models, and writes custom TensorFlow ops in C++. You train your models on large datasets and large batch sizes. Your typical batch size has 1024 examples, and each example is about 1 MB in size. The average size of a network with all weights and embeddings is 20 GB. What hardware should you choose for your models?

Options:

A.

A cluster with 2 n1-highcpu-64 machines, each with 8 NVIDIA Tesla V100 GPUs (128 GB GPU memory in total), and a n1-highcpu-64 machine with 64 vCPUs and 58 GB RAM

B.

A cluster with 2 a2-megagpu-16g machines, each with 16 NVIDIA Tesla A100 GPUs (640 GB GPU memory in total), 96 vCPUs, and 1.4 TB RAM

C.

A cluster with an n1-highcpu-64 machine with a v2-8 TPU and 64 GB RAM

D.

A cluster with 4 n1-highcpu-96 machines, each with 96 vCPUs and 86 GB RAM

Question 3

You are working on a classification problem with time series data and achieved an area under the receiver operating characteristic curve (AUC ROC) value of 99% for training data after just a few experiments. You haven’t explored using any sophisticated algorithms or spent any time on hyperparameter tuning. What should your next step be to identify and fix the problem?

Options:

A.

Address the model overfitting by using a less complex algorithm.

B.

Address data leakage by applying nested cross-validation during model training.

C.

Address data leakage by removing features highly correlated with the target value.

D.

Address the model overfitting by tuning the hyperparameters to reduce the AUC ROC value.