New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Jan 14, 2026
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You work on a data science team at a bank and are creating an ML model to predict loan default risk. You have collected and cleaned hundreds of millions of records worth of training data in a BigQuery table, and you now want to develop and compare multiple models on this data using TensorFlow and Vertex AI. You want to minimize any bottlenecks during the data ingestion state while considering scalability. What should you do?

Options:

A.

Use the BigQuery client library to load data into a dataframe, and use tf.data.Dataset.from_tensor_slices() to read it.

B.

Export data to CSV files in Cloud Storage, and use tf.data.TextLineDataset() to read them.

C.

Convert the data into TFRecords, and use tf.data.TFRecordDataset() to read them.

D.

Use TensorFlow I/O’s BigQuery Reader to directly read the data.

Buy Now
Question 2

You have recently trained a scikit-learn model that you plan to deploy on Vertex Al. This model will support both online and batch prediction. You need to preprocess input data for model inference. You want to package the model for deployment while minimizing additional code What should you do?

Options:

A.

1 Upload your model to the Vertex Al Model Registry by using a prebuilt scikit-learn prediction container

2 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig.inscanceType setting to transform your input data

B.

1 Wrap your model in a custom prediction routine (CPR). and build a container image from the CPR local model

2 Upload your sci-kit learn model container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

C.

1. Create a custom container for your sci-kit learn model,

2 Define a custom serving function for your model

3 Upload your model and custom container to Vertex Al Model Registry

4 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

D.

1 Create a custom container for your sci-kit learn model.

2 Upload your model and custom container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig. instanceType setting to transform your input data

Question 3

You work on the data science team for a multinational beverage company. You need to develop an ML model to predict the company’s profitability for a new line of naturally flavored bottled waters in different locations. You are provided with historical data that includes product types, product sales volumes, expenses, and profits for all regions. What should you use as the input and output for your model?

Options:

A.

Use latitude, longitude, and product type as features. Use profit as model output.

B.

Use latitude, longitude, and product type as features. Use revenue and expenses as model outputs.

C.

Use product type and the feature cross of latitude with longitude, followed by binning, as features. Use profit as model output.

D.

Use product type and the feature cross of latitude with longitude, followed by binning, as features. Use revenue and expenses as model outputs.