Big Halloween Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Machine-Learning-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Machine-Learning-Engineer
Exam Name:
Google Professional Machine Learning Engineer
Certification:
Vendor:
Questions:
285
Last Updated:
Nov 2, 2025
Exam Status:
Stable
Google Professional-Machine-Learning-Engineer

Professional-Machine-Learning-Engineer: Machine Learning Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Machine-Learning-Engineer (Google Professional Machine Learning Engineer) exam? Download the most recent Google Professional-Machine-Learning-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Machine-Learning-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Machine-Learning-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Machine-Learning-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Machine Learning Engineer) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Machine-Learning-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Machine-Learning-Engineer practice exam demo.

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You are developing a process for training and running your custom model in production. You need to be able to show lineage for your model and predictions. What should you do?

Options:

A.

1 Create a Vertex Al managed dataset

2 Use a Vertex Ai training pipeline to train your model

3 Generate batch predictions in Vertex Al

B.

1 Use a Vertex Al Pipelines custom training job component to train your model

2. Generate predictions by using a Vertex Al Pipelines model batch predict component

C.

1 Upload your dataset to BigQuery

2. Use a Vertex Al custom training job to train your model

3 Generate predictions by using Vertex Al SDK custom prediction routines

D.

1 Use Vertex Al Experiments to train your model.

2 Register your model in Vertex Al Model Registry

3. Generate batch predictions in Vertex Al

Buy Now
Question 2

You recently designed and built a custom neural network that uses critical dependencies specific to your organization's framework. You need to train the model using a managed training service on Google Cloud. However, the ML framework and related dependencies are not supported by Al Platform Training. Also, both your model and your data are too large to fit in memory on a single machine. Your ML framework of choice uses the scheduler, workers, and servers distribution structure. What should you do?

Options:

A.

Use a built-in model available on Al Platform Training

B.

Build your custom container to run jobs on Al Platform Training

C.

Build your custom containers to run distributed training jobs on Al Platform Training

D.

Reconfigure your code to a ML framework with dependencies that are supported by Al Platform Training

Question 3

You have developed a BigQuery ML model that predicts customer churn and deployed the model to Vertex Al Endpoints. You want to automate the retraining of your model by using minimal additional code when model feature values change. You also want to minimize the number of times that your model is retrained to reduce training costs. What should you do?

Options:

A.

1. Enable request-response logging on Vertex Al Endpoints.

2 Schedule a TensorFlow Data Validation job to monitor prediction drift

3. Execute model retraining if there is significant distance between the distributions.

B.

1. Enable request-response logging on Vertex Al Endpoints

2. Schedule a TensorFlow Data Validation job to monitor training/serving skew

3. Execute model retraining if there is significant distance between the distributions

C.

1 Create a Vertex Al Model Monitoring job configured to monitor prediction drift.

2. Configure alert monitoring to publish a message to a Pub/Sub queue when a monitonng alert is detected.

3. Use a Cloud Function to monitor the Pub/Sub queue, and trigger retraining in BigQuery

D.

1. Create a Vertex Al Model Monitoring job configured to monitor training/serving skew

2. Configure alert monitoring to publish a message to a Pub/Sub queue when a monitoring alert is detected

3. Use a Cloud Function to monitor the Pub/Sub queue, and trigger retraining in BigQuery.