New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Data-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Data-Engineer
Exam Name:
Google Professional Data Engineer Exam
Certification:
Vendor:
Questions:
387
Last Updated:
Dec 16, 2025
Exam Status:
Stable
Google Professional-Data-Engineer

Professional-Data-Engineer: Google Cloud Certified Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Data-Engineer (Google Professional Data Engineer Exam) exam? Download the most recent Google Professional-Data-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Data-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Data-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Data-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Data Engineer Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Data-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Data-Engineer practice exam demo.

Google Professional Data Engineer Exam Questions and Answers

Question 1

You are managing a Cloud Dataproc cluster. You need to make a job run faster while minimizing costs, without losing work in progress on your clusters. What should you do?

Options:

A.

Increase the cluster size with more non-preemptible workers.

B.

Increase the cluster size with preemptible worker nodes, and configure them to forcefully decommission.

C.

Increase the cluster size with preemptible worker nodes, and use Cloud Stackdriver to trigger a script to preserve work.

D.

Increase the cluster size with preemptible worker nodes, and configure them to use graceful decommissioning.

Buy Now
Question 2

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 3

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

Options:

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.