New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Google Professional-Data-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Professional-Data-Engineer
Exam Name:
Google Professional Data Engineer Exam
Certification:
Vendor:
Questions:
387
Last Updated:
Dec 20, 2025
Exam Status:
Stable
Google Professional-Data-Engineer

Professional-Data-Engineer: Google Cloud Certified Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Google Professional-Data-Engineer (Google Professional Data Engineer Exam) exam? Download the most recent Google Professional-Data-Engineer braindumps with answers that are 100% real. After downloading the Google Professional-Data-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Google Professional-Data-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Google Professional-Data-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Google Professional Data Engineer Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Professional-Data-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Google Professional-Data-Engineer practice exam demo.

Google Professional Data Engineer Exam Questions and Answers

Question 1

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Question 2

You have data pipelines running on BigQuery, Cloud Dataflow, and Cloud Dataproc. You need to perform health checks and monitor their behavior, and then notify the team managing the pipelines if they fail. You also need to be able to work across multiple projects. Your preference is to use managed products of features of the platform. What should you do?

Options:

A.

Export the information to Cloud Stackdriver, and set up an Alerting policy

B.

Run a Virtual Machine in Compute Engine with Airflow, and export the information to Stackdriver

C.

Export the logs to BigQuery, and set up App Engine to read that information and send emails if you find a failure in the logs

D.

Develop an App Engine application to consume logs using GCP API calls, and send emails if you find a failure in the logs

Question 3

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.