Big Black Friday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Dec 1, 2025
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A machine learning (ML) specialist is training a linear regression model. The specialist notices that the model is overfitting. The specialist applies an L1 regularization parameter and runs the model again. This change results in all features having zero weights.

What should the ML specialist do to improve the model results?

Options:

A.

Increase the L1 regularization parameter. Do not change any other training parameters.

B.

Decrease the L1 regularization parameter. Do not change any other training parameters.

C.

Introduce a large L2 regularization parameter. Do not change the current L1 regularization value.

D.

Introduce a small L2 regularization parameter. Do not change the current L1 regularization value.

Buy Now
Question 2

A machine learning (ML) specialist needs to solve a binary classification problem for a marketing dataset. The ML specialist must maximize the Area Under the ROC Curve (AUC) of the algorithm by training an XGBoost algorithm. The ML specialist must find values for the eta, alpha, min_child_weight, and max_depth hyperparameter that will generate the most accurate model.  

Which approach will meet these requirements with the LEAST operational overhead?  

Options:

A.

Use a bootstrap script to install scikit-learn on an Amazon EMR cluster. Deploy the EMR cluster. Apply k-fold cross-validation methods to the algorithm.

B.

Deploy Amazon SageMaker prebuilt Docker images that have scikit-learn installed. Apply k-fold cross-validation methods to the algorithm.

C.

Use Amazon SageMaker automatic model tuning (AMT). Specify a range of values for each hyperparameter.

D.

Subscribe to an AUC algorithm that is on AWS Marketplace. Specify a range of values for each hyperparameter.

Question 3

A car company is developing a machine learning solution to detect whether a car is present in an image. The image dataset consists of one million images. Each image in the dataset is 200 pixels in height by 200 pixels in width. Each image is labeled as either having a car or not having a car.

Which architecture is MOST likely to produce a model that detects whether a car is present in an image with the highest accuracy?

Options:

A.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

B.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

C.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

D.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.