Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Feb 8, 2026
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not

Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?

Options:

A.

Seq2seq

B.

XGBoost

C.

K-means

D.

Random Cut Forest (RCF)

Buy Now
Question 2

A chemical company has developed several machine learning (ML) solutions to identify chemical process abnormalities. The time series values of independent variables and the labels are available for the past 2 years and are sufficient to accurately model the problem.

The regular operation label is marked as 0. The abnormal operation label is marked as 1 . Process abnormalities have a significant negative effect on the companys profits. The company must avoid these abnormalities.

Which metrics will indicate an ML solution that will provide the GREATEST probability of detecting an abnormality?

Options:

A.

Precision = 0.91 Recall = 0.6

B.

Precision = 0.61 Recall = 0.98

C.

Precision = 0.7 Recall = 0.9

D.

Precision = 0.98 Recall = 0.8

Question 3

A logistics company needs a forecast model to predict next month's inventory requirements for a single item in 10 warehouses. A machine learning specialist uses Amazon Forecast to develop a forecast model from 3 years of monthly data. There is no missing data. The specialist selects the DeepAR+ algorithm to train a predictor. The predictor means absolute percentage error (MAPE) is much larger than the MAPE produced by the current human forecasters.

Which changes to the CreatePredictor API call could improve the MAPE? (Choose two.)

Options:

A.

Set PerformAutoML to true.

B.

Set ForecastHorizon to 4.

C.

Set ForecastFrequency to W for weekly.

D.

Set PerformHPO to true.

E.

Set FeaturizationMethodName to filling.