Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Feb 3, 2026
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Machine Learning Specialist is developing a custom video recommendation model for an application The dataset used to train this model is very large with millions of data points and is hosted in an Amazon S3 bucket The Specialist wants to avoid loading all of this data onto an Amazon SageMaker notebook instance because it would take hours to move and will exceed the attached 5 GB Amazon EBS volume on the notebook instance.

Which approach allows the Specialist to use all the data to train the model?

Options:

A.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the trainingcode is executing and the model parameters seem reasonable. Initiate a SageMaker training job using thefull dataset from the S3 bucket using Pipe input mode.

B.

Launch an Amazon EC2 instance with an AWS Deep Learning AMI and attach the S3 bucket to theinstance. Train on a small amount of the data to verify the training code and hyperparameters. Go back toAmazon SageMaker and train using the full dataset

C.

Use AWS Glue to train a model using a small subset of the data to confirm that the data will be compatiblewith Amazon SageMaker. Initiate a SageMaker training job using the full dataset from the S3 bucket usingPipe input mode.

D.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the trainingcode is executing and the model parameters seem reasonable. Launch an Amazon EC2 instance with anAWS Deep Learning AMI and attach the S3 bucket to train the full dataset.

Buy Now
Question 2

A chemical company has developed several machine learning (ML) solutions to identify chemical process abnormalities. The time series values of independent variables and the labels are available for the past 2 years and are sufficient to accurately model the problem.

The regular operation label is marked as 0. The abnormal operation label is marked as 1 . Process abnormalities have a significant negative effect on the companys profits. The company must avoid these abnormalities.

Which metrics will indicate an ML solution that will provide the GREATEST probability of detecting an abnormality?

Options:

A.

Precision = 0.91 Recall = 0.6

B.

Precision = 0.61 Recall = 0.98

C.

Precision = 0.7 Recall = 0.9

D.

Precision = 0.98 Recall = 0.8

Question 3

A data scientist is developing a pipeline to ingest streaming web traffic data. The data scientist needs to implement a process to identify unusual web traffic patterns as part of the pipeline. The patterns will be used downstream for alerting and incident response. The data scientist has access to unlabeled historic data to use, if needed.

The solution needs to do the following:

Calculate an anomaly score for each web traffic entry.

Adapt unusual event identification to changing web patterns over time.

Which approach should the data scientist implement to meet these requirements?

Options:

A.

Use historic web traffic data to train an anomaly detection model using the Amazon SageMaker Random Cut Forest (RCF) built-in model. Use an Amazon Kinesis Data Stream to process the incoming web traffic data. Attach a preprocessing AWS Lambda function to perform data enrichment by calling the RCF model to calculate the anomaly score for each record.

B.

Use historic web traffic data to train an anomaly detection model using the Amazon SageMaker built-in XGBoost model. Use an Amazon Kinesis Data Stream to process the incoming web traffic data. Attach a preprocessing AWS Lambda function to perform data enrichment by calling the XGBoost model to calculate the anomaly score for each record.

C.

Collect the streaming data using Amazon Kinesis Data Firehose. Map the delivery stream as an input source for Amazon Kinesis Data Analytics. Write a SQL query to run in real time against the streaming data with the k-Nearest Neighbors (kNN) SQL extension to calculate anomaly scores for each record using a tumbling window.

D.

Collect the streaming data using Amazon Kinesis Data Firehose. Map the delivery stream as an input source for Amazon Kinesis Data Analytics. Write a SQL query to run in real time against the streaming data with the Amazon Random Cut Forest (RCF) SQL extension to calculate anomaly scores for each record using a sliding window.