New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Dec 23, 2025
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?

Options:

A.

Use an Amazon SageMaker notebook for both feature engineering and model development

B.

Use an Amazon SageMaker notebook for feature engineering and Amazon ML for model development

C.

Use Amazon EMR for feature engineering and Amazon SageMaker SDK for model development

D.

Use Amazon ML for both feature engineering and model development.

Buy Now
Question 2

A Data Scientist is working on an application that performs sentiment analysis. The validation accuracy is poor and the Data Scientist thinks that the cause may be a rich vocabulary and a low average frequency of words in the dataset

Which tool should be used to improve the validation accuracy?

Options:

A.

Amazon Comprehend syntax analysts and entity detection

B.

Amazon SageMaker BlazingText allow mode

C.

Natural Language Toolkit (NLTK) stemming and stop word removal

D.

Scikit-learn term frequency-inverse document frequency (TF-IDF) vectorizers

Question 3

A machine learning (ML) specialist needs to extract embedding vectors from a text series. The goal is to provide a ready-to-ingest feature space for a data scientist to develop downstream ML predictive models. The text consists of curated sentences in English. Many sentences use similar words but in different contexts. There are questions and answers among the sentences, and the embedding space must differentiate between them.

Which options can produce the required embedding vectors that capture word context and sequential QA information? (Choose two.)

Options:

A.

Amazon SageMaker seq2seq algorithm

B.

Amazon SageMaker BlazingText algorithm in Skip-gram mode

C.

Amazon SageMaker Object2Vec algorithm

D.

Amazon SageMaker BlazingText algorithm in continuous bag-of-words (CBOW) mode

E.

Combination of the Amazon SageMaker BlazingText algorithm in Batch Skip-gram mode with a custom recurrent neural network (RNN)