New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Dec 15, 2025
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A data scientist has a dataset of machine part images stored in Amazon Elastic File System (Amazon EFS). The data scientist needs to use Amazon SageMaker to create and train an image classification machine learning model based on this dataset. Because of budget and time constraints, management wants the data scientist to create and train a model with the least number of steps and integration work required.

How should the data scientist meet these requirements?

Options:

A.

Mount the EFS file system to a SageMaker notebook and run a script that copies the data to an Amazon FSx for Lustre file system. Run the SageMaker training job with the FSx for Lustre file system as the data source.

B.

Launch a transient Amazon EMR cluster. Configure steps to mount the EFS file system and copy the data to an Amazon S3 bucket by using S3DistCp. Run the SageMaker training job with Amazon S3 as the data source.

C.

Mount the EFS file system to an Amazon EC2 instance and use the AWS CLI to copy the data to an Amazon S3 bucket. Run the SageMaker training job with Amazon S3 as the data source.

D.

Run a SageMaker training job with an EFS file system as the data source.

Buy Now
Question 2

A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

Options:

A.

Create new features and interaction variables.

B.

Use a principal component analysis (PCA) model.

C.

Apply normalization on the feature set.

D.

Use a multiple correspondence analysis (MCA) model

Question 3

A company supplies wholesale clothing to thousands of retail stores. A data scientist must create a model that predicts the daily sales volume for each item for each store. The data scientist discovers that more than half of the stores have been in business for less than 6 months. Sales data is highly consistent from week to week. Daily data from the database has been aggregated weekly, and weeks with no sales are omitted from the current dataset. Five years (100 MB) of sales data is available in Amazon S3.

Which factors will adversely impact the performance of the forecast model to be developed, and which actions should the data scientist take to mitigate them? (Choose two.)

Options:

A.

Detecting seasonality for the majority of stores will be an issue. Request categorical data to relate new stores with similar stores that have more historical data.

B.

The sales data does not have enough variance. Request external sales data from other industries to improve the model's ability to generalize.

C.

Sales data is aggregated by week. Request daily sales data from the source database to enable building a daily model.

D.

The sales data is missing zero entries for item sales. Request that item sales data from the source database include zero entries to enable building the model.

E.

Only 100 MB of sales data is available in Amazon S3. Request 10 years of sales data, which would provide 200 MB of training data for the model.