Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Jan 20, 2026
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A data scientist is using the Amazon SageMaker Neural Topic Model (NTM) algorithm to build a model that recommends tags from blog posts. The raw blog post data is stored in an Amazon S3 bucket in JSON format. During model evaluation, the data scientist discovered that the model recommends certain stopwords such as "a," "an,” and "the" as tags to certain blog posts, along with a few rare words that are present only in certain blog entries. After a few iterations of tag review with the content team, the data scientist notices that the rare words are unusual but feasible. The data scientist also must ensure that the tag recommendations of the generated model do not include the stopwords.

What should the data scientist do to meet these requirements?

Options:

A.

Use the Amazon Comprehend entity recognition API operations. Remove the detected words from the blog post data. Replace the blog post data source in the S3 bucket.

B.

Run the SageMaker built-in principal component analysis (PCA) algorithm with the blog post data from the S3 bucket as the data source. Replace the blog post data in the S3 bucket with the results of the training job.

C.

Use the SageMaker built-in Object Detection algorithm instead of the NTM algorithm for the training job to process the blog post data.

D.

Remove the stop words from the blog post data by using the Count Vectorizer function in the scikit-learn library. Replace the blog post data in the S3 bucket with the results of the vectorizer.

Buy Now
Question 2

A wildlife research company has a set of images of lions and cheetahs. The company created a dataset of the images. The company labeled each image with a binary label that indicates whether an image contains a lion or cheetah. The company wants to train a model to identify whether new images contain a lion or cheetah.

.... Dh Amazon SageMaker algorithm will meet this requirement?

Options:

A.

XGBoost

B.

Image Classification - TensorFlow

C.

Object Detection - TensorFlow

D.

Semantic segmentation - MXNet

Question 3

A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions

What metric is BEST suited to score the model?

Options:

A.

Precision

B.

Recall

C.

Area Under the ROC Curve (AUC)

D.

Root Mean Square Error (RMSE)