Big Cyber Monday Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Amazon Web Services MLS-C01 Exam With Confidence Using Practice Dumps

Exam Code:
MLS-C01
Exam Name:
AWS Certified Machine Learning - Specialty
Certification:
Questions:
330
Last Updated:
Dec 6, 2025
Exam Status:
Stable
Amazon Web Services MLS-C01

MLS-C01: AWS Certified Specialty Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Amazon Web Services MLS-C01 (AWS Certified Machine Learning - Specialty) exam? Download the most recent Amazon Web Services MLS-C01 braindumps with answers that are 100% real. After downloading the Amazon Web Services MLS-C01 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Amazon Web Services MLS-C01 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Amazon Web Services MLS-C01 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (AWS Certified Machine Learning - Specialty) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA MLS-C01 test is available at CertsTopics. Before purchasing it, you can also see the Amazon Web Services MLS-C01 practice exam demo.

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Mobile Network Operator is building an analytics platform to analyze and optimize a company's operations using Amazon Athena and Amazon S3

The source systems send data in CSV format in real lime The Data Engineering team wants to transform the data to the Apache Parquet format before storing it on Amazon S3

Which solution takes the LEAST effort to implement?

Options:

A.

Ingest .CSV data using Apache Kafka Streams on Amazon EC2 instances and use Kafka Connect S3 toserialize data as Parquet

B.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Glue to convert data into Parquet.

C.

Ingest .CSV data using Apache Spark Structured Streaming in an Amazon EMR cluster and use ApacheSpark to convert data into Parquet.

D.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Kinesis Data Firehose to convertdata into Parquet.

Buy Now
Question 2

IT leadership wants Jo transition a company's existing machine learning data storage environment to AWS as a temporary ad hoc solution The company currently uses a custom software process that heavily leverages SOL as a query language and exclusively stores generated csv documents for machine learning

The ideal state for the company would be a solution that allows it to continue to use the current workforce of SQL experts The solution must also support the storage of csv and JSON files, and be able to query over semi-structured data The following are high priorities for the company:

• Solution simplicity

• Fast development time

• Low cost

• High flexibility

What technologies meet the company's requirements?

Options:

A.

Amazon S3 and Amazon Athena

B.

Amazon Redshift and AWS Glue

C.

Amazon DynamoDB and DynamoDB Accelerator (DAX)

D.

Amazon RDS and Amazon ES

Question 3

A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy

Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?

Options:

A.

Launch multiple training jobs in parallel with different hyperparameters

B.

Create an AWS Step Functions workflow that monitors the accuracy in Amazon CloudWatch Logs and relaunches the training job with a defined list of hyperparameters

C.

Create a hyperparameter tuning job and set the accuracy as an objective metric.

D.

Create a random walk in the parameter space to iterate through a range of values that should be used for each individual hyperparameter