Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

MLA-C01 Exam Dumps : AWS Certified Machine Learning Engineer - Associate

PDF
MLA-C01 pdf
 Real Exam Questions and Answer
 Last Update: Feb 4, 2026
 Question and Answers: 207 With Explanation
 Compatible with all Devices
 Printable Format
 100% Pass Guaranteed
$29.75  $84.99
MLA-C01 exam
PDF + Testing Engine
MLA-C01 PDF + engine
 Both PDF & Practice Software
 Last Update: Feb 4, 2026
 Question and Answers: 207
 Discount Offer
 Download Free Demo
 24/7 Customer Support
$47.25  $134.99
Testing Engine
MLA-C01 Engine
 Desktop Based Application
 Last Update: Feb 4, 2026
 Question and Answers: 207
 Create Multiple Test Sets
 Questions Regularly Updated
  90 Days Free Updates
  Windows and Mac Compatible
$35  $99.99

Verified By IT Certified Experts

CertsTopics.com Certified Safe Files

Up-To-Date Exam Study Material

99.5% High Success Pass Rate

100% Accurate Answers

Instant Downloads

Exam Questions And Answers PDF

Try Demo Before You Buy

Certification Exams with Helpful Questions And Answers

AWS Certified Machine Learning Engineer - Associate Questions and Answers

Question 1

A company has deployed an ML model that detects fraudulent credit card transactions in real time in a banking application. The model uses Amazon SageMaker Asynchronous Inference. Consumers are reporting delays in receiving the inference results.

An ML engineer needs to implement a solution to improve the inference performance. The solution also must provide a notification when a deviation in model quality occurs.

Which solution will meet these requirements?

Options:

A.

Use SageMaker real-time inference for inference. Use SageMaker Model Monitor for notifications about model quality.

B.

Use SageMaker batch transform for inference. Use SageMaker Model Monitor for notifications about model quality.

C.

Use SageMaker Serverless Inference for inference. Use SageMaker Inference Recommender for notifications about model quality.

D.

Keep using SageMaker Asynchronous Inference for inference. Use SageMaker Inference Recommender for notifications about model quality.

Buy Now
Question 2

An ML engineer is building a logistic regression model to predict customer churn for subscription services. The dataset contains two string variables: location and job_seniority_level.

The location variable has 3 distinct values, and the job_seniority_level variable has over 10 distinct values.

The ML engineer must perform preprocessing on the variables.

Which solution will meet this requirement?

Options:

A.

Apply tokenization to location. Apply ordinal encoding to job_seniority_level.

B.

Apply one-hot encoding to location. Apply ordinal encoding to job_seniority_level.

C.

Apply binning to location. Apply standard scaling to job_seniority_level.

D.

Apply one-hot encoding to location. Apply standard scaling to job_seniority_level.

Question 3

A company uses Amazon SageMaker Studio to develop an ML model. The company has a single SageMaker Studio domain. An ML engineer needs to implement a solution that provides an automated alert when SageMaker compute costs reach a specific threshold.

Which solution will meet these requirements?

Options:

A.

Add resource tagging by editing the SageMaker user profile in the SageMaker domain. Configure AWS Cost Explorer to send an alert when the threshold is reached.

B.

Add resource tagging by editing the SageMaker user profile in the SageMaker domain. Configure AWS Budgets to send an alert when the threshold is reached.

C.

Add resource tagging by editing each user's IAM profile. Configure AWS Cost Explorer to send an alert when the threshold is reached.

D.

Add resource tagging by editing each user's IAM profile. Configure AWS Budgets to send an alert when the threshold is reached.