Snowflake Related Exams
ARA-R01 Exam
Two queries are run on the customer_address table:
create or replace TABLE CUSTOMER_ADDRESS ( CA_ADDRESS_SK NUMBER(38,0), CA_ADDRESS_ID VARCHAR(16), CA_STREET_NUMBER VARCHAR(IO) CA_STREET_NAME VARCHAR(60), CA_STREET_TYPE VARCHAR(15), CA_SUITE_NUMBER VARCHAR(10), CA_CITY VARCHAR(60), CA_COUNTY
VARCHAR(30), CA_STATE VARCHAR(2), CA_ZIP VARCHAR(10), CA_COUNTRY VARCHAR(20), CA_GMT_OFFSET NUMBER(5,2), CA_LOCATION_TYPE
VARCHAR(20) );
ALTER TABLE DEMO_DB.DEMO_SCH.CUSTOMER_ADDRESS ADD SEARCH OPTIMIZATION ON SUBSTRING(CA_ADDRESS_ID);
Which queries will benefit from the use of the search optimization service? (Select TWO).
Which technique will efficiently ingest and consume semi-structured data for Snowflake data lake workloads?
A Developer is having a performance issue with a Snowflake query. The query receives up to 10 different values for one parameter and then performs an aggregation over the majority of a fact table. It then
joins against a smaller dimension table. This parameter value is selected by the different query users when they execute it during business hours. Both the fact and dimension tables are loaded with new data in an overnight import process.
On a Small or Medium-sized virtual warehouse, the query performs slowly. Performance is acceptable on a size Large or bigger warehouse. However, there is no budget to increase costs. The Developer
needs a recommendation that does not increase compute costs to run this query.
What should the Architect recommend?