The GMRE functionality is guaranteed in Nokia equipment by controller redundancy. The controller is the hardware component that runs the GMPLS software and controls the switching fabric of the node. Each node has two controllers, one active and one standby, that synchronize their states and databases. If the active controller fails, the standby controller takes over and ensures the continuity of the GMRE functionality. References : Nokia GMPLS-controlled Optical Networks Course | Nokia, 1830 Photonic Service Switch (PSS) | Nokia
Question 2
Which of the following best describes Quality of Service in GMPLS?
Options:
A.
The ability to switch back to the nominal route after a failure is repaired without impacting existing traffic
B.
The amount of information that is possible to store in the Traffic Engineering Database (TED)
C.
The ability to set constraints such as latency and priority for different kinds of services
D.
The possibility to have L0 and L1 switching treated with the same quality level in the same network
Answer:
C
Explanation:
Explanation:
Quality of Service (QoS) in GMPLS is the ability to set constraints such as latency and priority for different kinds of services. This means that GMPLS can allocate network resources according to the specific requirements of each service, such as voice, video, or data. For example, a voice service may need low latency and high priority, while a data service may need high bandwidth and low priority. GMPLS can use Traffic Engineering (TE) extensions to OSPF and RSVP protocols to advertise and reserve network resources based on QoS parameters. References : [Nokia GMPLS-controlled Optical Networks Course | Nokia], [Quality of Service - Nokia]
Question 3
A network with ROADM GMPLS nodes and optical transponder connections could have:
Options:
A.
L0 restoration capabilities
B.
L1 restoration capabilities
C.
L0 and LI restoration capabilities
D.
No restoration capabilities
Answer:
C
Explanation:
Explanation:
A network with ROADM GMPLS nodes and optical transponder connections could have both L0 and L1 restoration capabilities. L0 restoration refers to the ability of the network to recover from failures at the optical layer, such as fiber cuts or node failures, by rerouting the affected LSPs to alternative paths at the same layer. L0 restoration can be achieved by using GMPLS signaling protocols, such as RSVP-TE or CR-LDP, to establish backup LSPs in advance or on demand. L0 restoration can provide fast recovery times and high availability for optical services34. L1 restoration refers to the ability of the network to recover from failures at the sub-wavelength layer, such as transponder failures or wavelength unavailability, by rerouting the affected LSPs to alternative paths at a higher layer. L1 restoration can be achieved by using GMPLS routing protocols, such as OSPF-TE or ISIS-TE, to advertise the sub-wavelength information and availability to other nodes in the network. L1 restoration can provide more flexibility and efficiency for sub-wavelength services56. References:
3: GMPLS - Nokia
4: Generalized Multi-Protocol Label Switching - Wikipedia
5: Sub-Wavelength Switching - Nokia
6: Sub-Wavelength Switching in Optical Networks - IEEE Xplore