Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free and Premium Amazon Web Services AIF-C01 Dumps Questions Answers

Page: 1 / 11
Total 150 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

A company is building a mobile app for users who have a visual impairment. The app must be able to hear what users say and provide voice responses.

Which solution will meet these requirements?

Options:

A.

Use a deep learning neural network to perform speech recognition.

B.

Build ML models to search for patterns in numeric data.

C.

Use generative AI summarization to generate human-like text.

D.

Build custom models for image classification and recognition.

Buy Now
Question 2

An ecommerce company wants to improve search engine recommendations by customizing the results for each user of the company's ecommerce platform. Which AWS service meets these requirements?

Options:

A.

Amazon Personalize

B.

Amazon Kendra

C.

Amazon Rekognition

D.

Amazon Transcribe

Question 3

A company wants to use generative AI to increase developer productivity and software development. The company wants to use Amazon Q Developer.

What can Amazon Q Developer do to help the company meet these requirements?

Options:

A.

Create software snippets, reference tracking, and open-source license tracking.

B.

Run an application without provisioning or managing servers.

C.

Enable voice commands for coding and providing natural language search.

D.

Convert audio files to text documents by using ML models.

Question 4

Which feature of Amazon OpenSearch Service gives companies the ability to build vector database applications?

Options:

A.

Integration with Amazon S3 for object storage

B.

Support for geospatial indexing and queries

C.

Scalable index management and nearest neighbor search capability

D.

Ability to perform real-time analysis on streaming data

Question 5

Which option is a benefit of ongoing pre-training when fine-tuning a foundation model (FM)?

Options:

A.

Helps decrease the model's complexity

B.

Improves model performance over time

C.

Decreases the training time requirement

D.

Optimizes model inference time

Question 6

A company deployed an AI/ML solution to help customer service agents respond to frequently asked questions. The questions can change over time. The company wants to give customer service agents the ability to ask questions and receive automatically generated answers to common customer questions. Which strategy will meet these requirements MOST cost-effectively?

Options:

A.

Fine-tune the model regularly.

B.

Train the model by using context data.

C.

Pre-train and benchmark the model by using context data.

D.

Use Retrieval Augmented Generation (RAG) with prompt engineering techniques.

Question 7

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 8

Which component of Amazon Bedrock Studio can help secure the content that AI systems generate?

Options:

A.

Access controls

B.

Function calling

C.

Guardrails

D.

Knowledge bases

Question 9

A company wants to create a new solution by using AWS Glue. The company has minimal programming experience with AWS Glue.

Which AWS service can help the company use AWS Glue?

Options:

A.

Amazon Q Developer

B.

AWS Config

C.

Amazon Personalize

D.

Amazon Comprehend

Question 10

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

Options:

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score

Question 11

A media company wants to analyze viewer behavior and demographics to recommend personalized content. The company wants to deploy a customized ML model in its production environment. The company also wants to observe if the model quality drifts over time.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon Rekognition

B.

Amazon SageMaker Clarify

C.

Amazon Comprehend

D.

Amazon SageMaker Model Monitor

Question 12

Which AW5 service makes foundation models (FMs) available to help users build and scale generative AI applications?

Options:

A.

Amazon Q Developer

B.

Amazon Bedrock

C.

Amazon Kendra

D.

Amazon Comprehend

Question 13

Which metric measures the runtime efficiency of operating AI models?

Options:

A.

Customer satisfaction score (CSAT)

B.

Training time for each epoch

C.

Average response time

D.

Number of training instances

Question 14

What are tokens in the context of generative AI models?

Options:

A.

Tokens are the basic units of input and output that a generative AI model operates on, representing words, subwords, or other linguistic units.

B.

Tokens are the mathematical representations of words or concepts used in generative AI models.

C.

Tokens are the pre-trained weights of a generative AI model that are fine-tuned for specific tasks.

D.

Tokens are the specific prompts or instructions given to a generative AI model to generate output.

Question 15

Which scenario represents a practical use case for generative AI?

Options:

A.

Using an ML model to forecast product demand

B.

Employing a chatbot to provide human-like responses to customer queries in real time

C.

Using an analytics dashboard to track website traffic and user behavior

D.

Implementing a rule-based recommendation engine to suggest products to customers

Question 16

A company is building a solution to generate images for protective eyewear. The solution must have high accuracy and must minimize the risk of incorrect annotations.

Which solution will meet these requirements?

Options:

A.

Human-in-the-loop validation by using Amazon SageMaker Ground Truth Plus

B.

Data augmentation by using an Amazon Bedrock knowledge base

C.

Image recognition by using Amazon Rekognition

D.

Data summarization by using Amazon QuickSight

Question 17

A company wants to create an application by using Amazon Bedrock. The company has a limited budget and prefers flexibility without long-term commitment.

Which Amazon Bedrock pricing model meets these requirements?

Options:

A.

On-Demand

B.

Model customization

C.

Provisioned Throughput

D.

Spot Instance

Question 18

A social media company wants to use a large language model (LLM) for content moderation. The company wants to evaluate the LLM outputs for bias and potential discrimination against specific groups or individuals.

Which data source should the company use to evaluate the LLM outputs with the LEAST administrative effort?

Options:

A.

User-generated content

B.

Moderation logs

C.

Content moderation guidelines

D.

Benchmark datasets

Question 19

A security company is using Amazon Bedrock to run foundation models (FMs). The company wants to ensure that only authorized users invoke the models. The company needs to identify any unauthorized access attempts to set appropriate AWS Identity and Access Management (IAM) policies and roles for future iterations of the FMs.

Which AWS service should the company use to identify unauthorized users that are trying to access Amazon Bedrock?

Options:

A.

AWS Audit Manager

B.

AWS CloudTrail

C.

Amazon Fraud Detector

D.

AWS Trusted Advisor

Question 20

A company is implementing intelligent agents to provide conversational search experiences for its customers. The company needs a database service that will support storage and queries of embeddings from a generative AI model as vectors in the database.

Which AWS service will meet these requirements?

Options:

A.

Amazon Athena

B.

Amazon Aurora PostgreSQL

C.

Amazon Redshift

D.

Amazon EMR

Question 21

Which option is a use case for generative AI models?

Options:

A.

Improving network security by using intrusion detection systems

B.

Creating photorealistic images from text descriptions for digital marketing

C.

Enhancing database performance by using optimized indexing

D.

Analyzing financial data to forecast stock market trends

Question 22

An AI practitioner has built a deep learning model to classify the types of materials in images. The AI practitioner now wants to measure the model performance.

Which metric will help the AI practitioner evaluate the performance of the model?

Options:

A.

Confusion matrix

B.

Correlation matrix

C.

R2 score

D.

Mean squared error (MSE)

Question 23

A company wants to build an ML model by using Amazon SageMaker. The company needs to share and manage variables for model development across multiple teams.

Which SageMaker feature meets these requirements?

Options:

A.

Amazon SageMaker Feature Store

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Clarify

D.

Amazon SageMaker Model Cards

Question 24

A company has petabytes of unlabeled customer data to use for an advertisement campaign. The company wants to classify its customers into tiers to advertise and promote the company's products.

Which methodology should the company use to meet these requirements?

Options:

A.

Supervised learning

B.

Unsupervised learning

C.

Reinforcement learning

D.

Reinforcement learning from human feedback (RLHF)

Question 25

A company is using domain-specific models. The company wants to avoid creating new models from the beginning. The company instead wants to adapt pre-trained models to create models for new, related tasks.

Which ML strategy meets these requirements?

Options:

A.

Increase the number of epochs.

B.

Use transfer learning.

C.

Decrease the number of epochs.

D.

Use unsupervised learning.

Question 26

A company wants to develop ML applications to improve business operations and efficiency.

Select the correct ML paradigm from the following list for each use case. Each ML paradigm should be selected one or more times. (Select FOUR.)

• Supervised learning

• Unsupervised learning

Options:

Question 27

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Question 28

A company has built a chatbot that can respond to natural language questions with images. The company wants to ensure that the chatbot does not return inappropriate or unwanted images.

Which solution will meet these requirements?

Options:

A.

Implement moderation APIs.

B.

Retrain the model with a general public dataset.

C.

Perform model validation.

D.

Automate user feedback integration.

Question 29

A company is using Amazon SageMaker Studio notebooks to build and train ML models. The company stores the data in an Amazon S3 bucket. The company needs to manage the flow of data from Amazon S3 to SageMaker Studio notebooks.

Which solution will meet this requirement?

Options:

A.

Use Amazon Inspector to monitor SageMaker Studio.

B.

Use Amazon Macie to monitor SageMaker Studio.

C.

Configure SageMaker to use a VPC with an S3 endpoint.

D.

Configure SageMaker to use S3 Glacier Deep Archive.

Question 30

A law firm wants to build an AI application by using large language models (LLMs). The application will read legal documents and extract key points from the documents.

Which solution meets these requirements?

Options:

A.

Build an automatic named entity recognition system.

B.

Create a recommendation engine.

C.

Develop a summarization chatbot.

D.

Develop a multi-language translation system.

Question 31

A company is using an Amazon Bedrock base model to summarize documents for an internal use case. The company trained a custom model to improve the summarization quality.

Which action must the company take to use the custom model through Amazon Bedrock?

Options:

A.

Purchase Provisioned Throughput for the custom model.

B.

Deploy the custom model in an Amazon SageMaker endpoint for real-time inference.

C.

Register the model with the Amazon SageMaker Model Registry.

D.

Grant access to the custom model in Amazon Bedrock.

Question 32

A company is implementing the Amazon Titan foundation model (FM) by using Amazon Bedrock. The company needs to supplement the model by using relevant data from the company's private data sources.

Which solution will meet this requirement?

Options:

A.

Use a different FM

B.

Choose a lower temperature value

C.

Create an Amazon Bedrock knowledge base

D.

Enable model invocation logging

Question 33

A company is building an ML model. The company collected new data and analyzed the data by creating a correlation matrix, calculating statistics, and visualizing the data.

Which stage of the ML pipeline is the company currently in?

Options:

A.

Data pre-processing

B.

Feature engineering

C.

Exploratory data analysis

D.

Hyperparameter tuning

Question 34

A company wants to fine-tune an ML model that is hosted on Amazon Bedrock. The company wants to use its own sensitive data that is stored in private databases in a VPC. The data needs to stay within the company's private network.

Which solution will meet these requirements?

Options:

A.

Restrict access to Amazon Bedrock by using an AWS Identity and Access Management (IAM) service role.

B.

Restrict access to Amazon Bedrock by using an AWS Identity and Access Management (IAM) resource policy.

C.

Use AWS PrivateLink to connect the VPC and Amazon Bedrock.

D.

Use AWS Key Management Service (AWS KMS) keys to encrypt the data.

Question 35

A company wants to use large language models (LLMs) with Amazon Bedrock to develop a chat interface for the company's product manuals. The manuals are stored as PDF files.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Use prompt engineering to add one PDF file as context to the user prompt when the prompt is submitted to Amazon Bedrock.

B.

Use prompt engineering to add all the PDF files as context to the user prompt when the prompt is submitted to Amazon Bedrock.

C.

Use all the PDF documents to fine-tune a model with Amazon Bedrock. Use the fine-tuned model to process user prompts.

D.

Upload PDF documents to an Amazon Bedrock knowledge base. Use the knowledge base to provide context when users submit prompts to Amazon Bedrock.

Question 36

What does an F1 score measure in the context of foundation model (FM) performance?

Options:

A.

Model precision and recall.

B.

Model speed in generating responses.

C.

Financial cost of operating the model.

D.

Energy efficiency of the model's computations.

Question 37

A manufacturing company uses AI to inspect products and find any damages or defects.

Which type of AI application is the company using?

Options:

A.

Recommendation system

B.

Natural language processing (NLP)

C.

Computer vision

D.

Image processing

Question 38

A company is building a contact center application and wants to gain insights from customer conversations. The company wants to analyze and extract key information from the audio of the customer calls.

Which solution meets these requirements?

Options:

A.

Build a conversational chatbot by using Amazon Lex.

B.

Transcribe call recordings by using Amazon Transcribe.

C.

Extract information from call recordings by using Amazon SageMaker Model Monitor.

D.

Create classification labels by using Amazon Comprehend.

Question 39

Which option is a characteristic of AI governance frameworks for building trust and deploying human-centered AI technologies?

Options:

A.

Expanding initiatives across business units to create long-term business value

B.

Ensuring alignment with business standards, revenue goals, and stakeholder expectations

C.

Overcoming challenges to drive business transformation and growth

D.

Developing policies and guidelines for data, transparency, responsible AI, and compliance\

Question 40

A digital devices company wants to predict customer demand for memory hardware. The company does not have coding experience or knowledge of ML algorithms and needs to develop a data-driven predictive model. The company needs to perform analysis on internal data and external data.

Which solution will meet these requirements?

Options:

A.

Store the data in Amazon S3. Create ML models and demand forecast predictions by using Amazon SageMaker built-in algorithms that use the data from Amazon S3.

B.

Import the data into Amazon SageMaker Data Wrangler. Create ML models and demand forecast predictions by using SageMaker built-in algorithms.

C.

Import the data into Amazon SageMaker Data Wrangler. Build ML models and demand forecast predictions by using an Amazon Personalize Trending-Now recipe.

D.

Import the data into Amazon SageMaker Canvas. Build ML models and demand forecast predictions by selecting the values in the data from SageMaker Canvas.

Question 41

A company is building a chatbot to improve user experience. The company is using a large language model (LLM) from Amazon Bedrock for intent detection. The company wants to use few-shot learning to improve intent detection accuracy.

Which additional data does the company need to meet these requirements?

Options:

A.

Pairs of chatbot responses and correct user intents

B.

Pairs of user messages and correct chatbot responses

C.

Pairs of user messages and correct user intents

D.

Pairs of user intents and correct chatbot responses

Question 42

A company has terabytes of data in a database that the company can use for business analysis. The company wants to build an AI-based application that can build a SQL query from input text that employees provide. The employees have minimal experience with technology.

Which solution meets these requirements?

Options:

A.

Generative pre-trained transformers (GPT)

B.

Residual neural network

C.

Support vector machine

D.

WaveNet

Question 43

A company is building an application that needs to generate synthetic data that is based on existing data.

Which type of model can the company use to meet this requirement?

Options:

A.

Generative adversarial network (GAN)

B.

XGBoost

C.

Residual neural network

D.

WaveNet

Question 44

An AI practitioner needs to improve the accuracy of a natural language generation model. The model uses rapidly changing inventory data.

Which technique will improve the model's accuracy?

Options:

A.

Transfer learning

B.

Federated learning

C.

Retrieval Augmented Generation (RAG)

D.

One-shot prompting

Question 45

Which phase of the ML lifecycle determines compliance and regulatory requirements?

Options:

A.

Feature engineering

B.

Model training

C.

Data collection

D.

Business goal identification

Page: 1 / 11
Total 150 questions