Winter Sale - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Professional-Data-Engineer VCE Exam Download

Google Professional Data Engineer Exam Questions and Answers

Question 41

Your organization stores employee information in a BigQuery dataset. Your human resources (HR) admin team requires full access to the data, but the HR analyst team needs to conduct salary analysis without being able to access personally identifiable information (PII). You want to ensure that users have the correct level of access for their role managed through Dataplex, while reducing data duplication. What should you do?

Options:

A.

Create an authorized view to limit data access based on a user role.

B.

Create and assign policy tags based on user role to the PII columns in BigQuery.

C.

Create a new dataset for salary analysis and use data masking to obfuscate all fields related to an individual.

D.

Create a new dataset and use Cloud Data Loss Prevention (Cloud DLP) to mask PII in the BigQuery table.

Question 42

You are building a teal-lime prediction engine that streams files, which may contain Pll (personal identifiable information) data, into Cloud Storage and eventually into BigQuery You want to ensure that the sensitive data is masked but still maintains referential Integrity, because names and emails are often used as join keys How should you use the Cloud Data Loss Prevention API (DLP API) to ensure that the Pll data is not accessible by unauthorized individuals?

Options:

A.

Create a pseudonym by replacing the Pll data with cryptogenic tokens, and store the non-tokenized data in a locked-down button.

B.

Redact all Pll data, and store a version of the unredacted data in a locked-down bucket

C.

Scan every table in BigQuery, and mask the data it finds that has Pll

D.

Create a pseudonym by replacing Pll data with a cryptographic format-preserving token

Question 43

You are designing a real-time system for a ride hailing app that identifies areas with high demand for rides to effectively reroute available drivers to meet the demand. The system ingests data from multiple sources to Pub/Sub. processes the data, and stores the results for visualization and analysis in real-time dashboards. The data sources include driver location updates every 5 seconds and app-based booking events from riders. The data processing involves real-time aggregation of supply and demand data for the last 30 seconds, every 2 seconds, and storing the results in a low-latency system for visualization. What should you do?

Options:

A.

Group the data by using a tumbling window in a Dataflow pipeline, and write the aggregated data to Memorystore

B.

Group the data by using a hopping window in a Dataflow pipeline, and write the aggregated data to Memorystore

C.

Group the data by using a session window in a Dataflow pipeline, and write the aggregated data to BigQuery.

D.

Group the data by using a hopping window in a Dataflow pipeline, and write the aggregated data to BigQuery.

Question 44

You are on the data governance team and are implementing security requirements to deploy resources. You need to ensure that resources are limited to only the europe-west 3 region You want to follow Google-recommended practices What should you do?

Options:

A.

Deploy resources with Terraform and implement a variable validation rule to ensure that the region is set to the europe-west3 region for all resources.

B.

Set the constraints/gcp. resourceLocations organization policy constraint to in:eu-locations.

C.

Create a Cloud Function to monitor all resources created and automatically destroy the ones created outside the europe-west3 region.

D.

Set the constraints/gcp. resourceLocations organization policy constraint to in: europe-west3-locations.