You are migrating a large number of files from a public HTTPS endpoint to Cloud Storage. The files are protected from unauthorized access using signed URLs. You created a TSV file that contains the list of object URLs and started a transfer job by using Storage Transfer Service. You notice that the job has run for a long time and eventually failed Checking the logs of the transfer job reveals that the job was running fine until one point, and then it failed due to HTTP 403 errors on the remaining files You verified that there were no changes to the source system You need to fix the problem to resume the migration process. What should you do?
You have several Spark jobs that run on a Cloud Dataproc cluster on a schedule. Some of the jobs run in sequence, and some of the jobs run concurrently. You need to automate this process. What should you do?
After migrating ETL jobs to run on BigQuery, you need to verify that the output of the migrated jobs is the same as the output of the original. You’ve loaded a table containing the output of the original job and want to compare the contents with output from the migrated job to show that they are identical. The tables do not contain a primary key column that would enable you to join them together for comparison.
What should you do?
You are building a new application that you need to collect data from in a scalable way. Data arrives continuously from the application throughout the day, and you expect to generate approximately 150 GB of JSON data per day by the end of the year. Your requirements are:
Decoupling producer from consumer
Space and cost-efficient storage of the raw ingested data, which is to be stored indefinitely
Near real-time SQL query
Maintain at least 2 years of historical data, which will be queried with SQ
Which pipeline should you use to meet these requirements?