You manage an Azure Machine Learning workspace. The Pylhon scrip! named scriptpy reads an argument named training_data. The trainlng.data argument specifies the path to the training data in a file named datasetl.csv.
You plan to run the scriptpy Python script as a command job that trains a machine learning model.
You need to provide the command to pass the path for the datasct as a parameter value when you submit the script as a training job.
Solution: python script.py –training_data dataset1,csv
Does the solution meet the goal?
You have an Azure Machine Learning workspace.
You plan to use automated machine learning in the workspace to train a natural language processing model for multi-class classification. You need to provide a dataset for training the model. How should you format the data?
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You have an Azure Machine Learning workspace. You connect to a terminal session from the Notebooks page in Azure Machine Learning studio.
You plan to add a new Jupyter kernel that will be accessible from the same terminal session.
You need to perform the task that must be completed before you can add the new kernel.
Solution: Create an environment.
Does the solution meet the goal?
You are planning to register a trained model in an Azure Machine Learning workspace.
You must store additional metadata about the model in a key-value format. You must be able to add new metadata and modify or delete metadata after creation.
You need to register the model.
Which parameter should you use?