Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free Associate-Data-Practitioner Questions Attempt

Google Cloud Associate Data Practitioner (ADP Exam) Questions and Answers

Question 9

Your company is migrating their batch transformation pipelines to Google Cloud. You need to choose a solution that supports programmatic transformations using only SQL. You also want the technology to support Git integration for version control of your pipelines. What should you do?

Options:

A.

Use Cloud Data Fusion pipelines.

B.

Use Dataform workflows.

C.

Use Dataflow pipelines.

D.

Use Cloud Composer operators.

Question 10

You are working with a large dataset of customer reviews stored in Cloud Storage. The dataset contains several inconsistencies, such as missing values, incorrect data types, and duplicate entries. You need toclean the data to ensure that it is accurate and consistent before using it for analysis. What should you do?

Options:

A.

Use the PythonOperator in Cloud Composer to clean the data and load it into BigQuery. Use SQL for analysis.

B.

Use BigQuery to batch load the data into BigQuery. Use SQL for cleaning and analysis.

C.

Use Storage Transfer Service to move the data to a different Cloud Storage bucket. Use event triggers to invoke Cloud Run functions to load the data into BigQuery. Use SQL for analysis.

D.

Use Cloud Run functions to clean the data and load it into BigQuery. Use SQL for analysis.

Question 11

You are designing a pipeline to process data files that arrive in Cloud Storage by 3:00 am each day. Data processing is performed in stages, where the output of one stage becomes the input of the next. Each stage takes a long time to run. Occasionally a stage fails, and you have to address

the problem. You need to ensure that the final output is generated as quickly as possible. What should you do?

Options:

A.

Design a Spark program that runs under Dataproc. Code the program to wait for user input when an error is detected. Rerun the last action after correcting any stage output data errors.

B.

Design the pipeline as a set of PTransforms in Dataflow. Restart the pipeline after correcting any stage output data errors.

C.

Design the workflow as a Cloud Workflow instance. Code the workflow to jump to a given stage based on an input parameter. Rerun the workflow after correcting any stage output data errors.

D.

Design the processing as a directed acyclic graph (DAG) in Cloud Composer. Clear the state of the failed task after correcting any stage output data errors.

Question 12

You need to design a data pipeline that ingests data from CSV, Avro, and Parquet files into Cloud Storage. The data includes raw user input. You need to remove all malicious SQL injections before storing the data in BigQuery. Which data manipulation methodology should you choose?

Options:

A.

EL

B.

ELT

C.

ETL

D.

ETLT