Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Changed Associate-Data-Practitioner Exam Questions

Google Cloud Associate Data Practitioner (ADP Exam) Questions and Answers

Question 25

You work for an ecommerce company that has a BigQuery dataset that contains customer purchase history, demographics, and website interactions. You need to build a machine learning (ML) model to predict which customers are most likely to make a purchase in the next month. You have limited engineering resources and need to minimize the ML expertise required for the solution. What should you do?

Options:

A.

Use BigQuery ML to create a logistic regression model for purchase prediction.

B.

Use Vertex AI Workbench to develop a custom model for purchase prediction.

C.

Use Colab Enterprise to develop a custom model for purchase prediction.

D.

Export the data to Cloud Storage, and use AutoML Tables to build a classification model for purchase prediction.

Question 26

You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?

Options:

A.

Export the data from BigQuery to a local machine. Use scikit-learn in a Jupyter notebook to build the churn prediction model.

B.

Use Dataproc to create a Spark cluster. Use the Spark MLlib within the cluster to build the churn prediction model.

C.

Create a Looker dashboard that is connected to BigQuery. Use LookML to predict churn.

D.

Use the BigQuery Python client library in a Jupyter notebook to query and preprocess the data in BigQuery. Use the CREATE MODEL statement in BigQueryML to train the churn prediction model.