You work for an ecommerce company that has a BigQuery dataset that contains customer purchase history, demographics, and website interactions. You need to build a machine learning (ML) model to predict which customers are most likely to make a purchase in the next month. You have limited engineering resources and need to minimize the ML expertise required for the solution. What should you do?
You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?