A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.
The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.
A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.
Which solution will meet these requirements with the LEAST operational effort?
A company needs to partition the Amazon S3 storage that the company uses for a data lake. The partitioning will use a path of the S3 object keys in the following format: s3://bucket/prefix/year=2023/month=01/day=01.
A data engineer must ensure that the AWS Glue Data Catalog synchronizes with the S3 storage when the company adds new partitions to the bucket.
Which solution will meet these requirements with the LEAST latency?
A data engineer is building a new data pipeline that stores metadata in an Amazon DynamoDB table. The data engineer must ensure that all items that are older than a specified age are removed from the DynamoDB table daily.
Which solution will meet this requirement with the LEAST configuration effort?
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)