Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

ANS-C01 VCE Exam Download

Page: 21 / 21
Total 288 questions

Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Question 81

A company has a VPC that includes application workloads that run on Amazon EC2 instances in a single AWS Region. The company wants to use AWS Local Zones to deploy an extension of the application workloads that run in the Region. The extended workloads in the Local Zone need to communicate bidirectionally with the workloads in the VPC in the Region.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a new VPC in the Local Zone. Attach all the VPCs to a transit gateway. Configure routing for the transit gateway and the VPCs. Deploy instances in the new VPC.

B.

Deploy a third-party appliance in a new VPC in the Region. Create a new VPC in the Local Zone. Create VPN connections to the appliance for the VPCs. Deploy instances in the new VPC in the Local Zone.

C.

Create a new subnet in the Local Zone. Deploy a third-party appliance in the VPC with interfaces in each subnet. Configure the new subnet to route the Local Zone through the appliance. Deploy instances in the new subnet.

D.

Create a new subnet in the Local Zone. Configure the new subnet to use a CIDR block that is within the VPC’s CIDR block. Deploy instances in the new subnet in the Local Zone.

Question 82

An education agency is preparing for its annual competition between schools. In the competition, students at schools from around the country solve math problems, complete puzzles, and write essays.

The IP addressing plan of all the schools is well-known and is administered centrally. The competition is hosted in the AWS Cloud and is not publicly available. All competition traffic must be encrypted in transit. Only authorized endpoints can access the competition. All the schools have firewall policies that block ICMP traffic.

A network engineer builds a solution in which all the schools access the competition through AWS Site-to-Site VPN connections. The network engineer uses BGP as the routing protocol. The network engineer must implement a solution that notifies schools when they lose connectivity and need to take action on their premises to address the issue.

Which combination of steps will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Monitor the state of the VPN tunnels by using Amazon CloudWatch. Create a CloudWatch alarm that uses Amazon Simple Notification Service (Amazon SNS) to notifypeople at the affected school if the tunnels are down.

B.

Create a scheduled AWS Lambda function that pings each school's on-premises customer gateway device. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if the ping fails.

C.

Create a scheduled AWS Lambda function that uses the VPC Reachability Analyzer API to verify the connectivity. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

D.

Create an Amazon CloudWatch dashboard for each school to show all CloudWatch metrics for each school's Site-to-Site VPN connection. Share each dashboard with the appropriate school.

E.

Create a scheduled AWS Lambda function to monitor the existence of each school's routes in the VPC route table where VPN routes are propagated. Configure the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification to people at the affected school if failure occurs.

Question 83

A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.

The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.

B.

Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.

C.

Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.

D.

Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Question 84

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

Options:

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Page: 21 / 21
Total 288 questions