You have been instructed to look in the ArubaOS Security Dashboard's client list. Your goal is to find clients that belong to the company and have connected to devices that might belong to hackers.
Which client fits this description?
MAC address: d8:50:e6:f3:70:ab; Client Classification: Interfering; AP Classification: Rogue
MAC address: d8:50:e6:f3:6e:c5; Client Classification: Interfering; AP Classification: Neighbor
MAC address: d8:50:e6:f3:6e:60; Client Classification: Interfering; AP Classification: Authorized
MAC address: d8:50:e6:f3:6d:a4; Client Classification: Authorized; AP Classification: Rogue
The ArubaOS Security Dashboard, part of the AOS-8 architecture (Mobility Controllers or Mobility Master), provides visibility into wireless clients and access points (APs) through its Wireless Intrusion Prevention (WIP) system. The goal is to identify clients that belong to the company (i.e., authorized clients) and have connected to devices that might belong to hackers (i.e., rogue APs).
Client Classification:
Authorized: A client that has successfully authenticated to an authorized AP and is recognized as part of the company’s network (e.g., an employee device).
Interfering: A client that is not authenticated to the company’s network and is considered external or potentially malicious.
AP Classification:
Authorized: An AP that is part of the company’s network and managed by the MC/MM.
Rogue: An AP that is not authorized and is suspected of being malicious (e.g., connected to the company’s wired network without permission).
Neighbor: An AP that is not part of the company’s network but is not connected to the wired network (e.g., a nearby AP from another organization).
The requirement is to find a client that is authorized (belongs to the company) and connected to a rogue AP (might belong to hackers).
Option A: MAC address: d8:50:e6:f3:70:ab; Client Classification: Interfering; AP Classification: RogueThis client is classified as "Interfering," meaning it does not belong to the company. Although it is connected to a rogue AP, it does not meet the requirement of being a company client.
Option B: MAC address: d8:50:e6:f3:6e:c5; Client Classification: Interfering; AP Classification: NeighborThis client is "Interfering" (not a company client) and connected to a "Neighbor" AP, which is not considered a hacker’s device (it’s just a nearby AP).
Option C: MAC address: d8:50:e6:f3:6e:60; Client Classification: Interfering; AP Classification: AuthorizedThis client is "Interfering" (not a company client) and connected to an "Authorized" AP, which is part of the company’s network, not a hacker’s device.
Option D: MAC address: d8:50:e6:f3:6d:a4; Client Classification: Authorized; AP Classification: RogueThis client is "Authorized," meaning it belongs to the company, and it is connected to a "Rogue" AP, which might belong to hackers. This matches the requirement perfectly.
The HPE Aruba Networking AOS-8 8.11 User Guide states:
"The Security Dashboard in ArubaOS provides a client list that includes the client classification and the AP classification for each client. A client classified as ‘Authorized’ has successfully authenticated to an authorized AP and is part of the company’s network. A ‘Rogue’ AP is an unauthorized AP that is suspected of being malicious, often because it is connected to the company’s wired network (e.g., detected via Eth-Wired-Mac-Table match). To identify potential security risks, look for authorized clients connected to rogue APs, as this may indicate that a company device has connected to a hacker’s AP." (Page 415, Security Dashboard Section)
Additionally, the HPE Aruba Networking Security Guide notes:
"An ‘Authorized’ client is one that has authenticated to an AP managed by the controller, typically an employee or corporate device. A ‘Rogue’ AP is classified as such if it is not authorized and poses a potential threat, such as being connected to the corporate LAN. Identifying authorized clients connected to rogue APs is critical for detecting potential man-in-the-middle attacks." (Page 78, WIP Classifications Section)
Your AOS solution has detected a rogue AP with Wireless Intrusion Prevention (WIP). Which information about the detected radio can best help you to locate the rogue device?
The detecting devices
The match method
The confidence level
The match type
In an HPE Aruba Networking AOS-8 solution, the Wireless Intrusion Prevention (WIP) system is used to detect and classify rogue Access Points (APs). When a rogue AP is detected, the AOS system provides various pieces of information about the detected radio, such as the SSID, BSSID, match method, match type, confidence level, and the devices that detected the rogue AP. The goal is to locate the physical rogue device, which requires identifying its approximate location in the network environment.
Option A, "The detecting devices," is correct. The "detecting devices" refer to the authorized APs or radios that detected the rogue AP’s signal. This information is critical for locating the rogue device because it provides the physical locations of the detecting APs. By knowing which APs detected the rogue AP and their signal strength (RSSI) readings, you can triangulate the approximate location of the rogue AP. For example, if AP-1 in Building A and AP-2 in Building B both detect the rogue AP, and AP-1 reports a stronger signal, the rogue AP is likely closer to AP-1 in Building A.
Option B, "The match method," is incorrect. The match method (e.g., "Plus one," "Eth-Wired-Mac-Table") indicates how the rogue AP was classified (e.g., based on a BSSID close to a known MAC or its presence on the wired network). While this helps understand why the AP was classified as rogue, it does not directly help locate the physical device.
Option C, "The confidence level," is incorrect. The confidence level indicates the likelihood that the AP is correctly classified as rogue (e.g., 90% confidence). This is useful for assessing the reliability of the classification but does not provide location information.
Option D, "The match type," is incorrect. The match type (e.g., "Rogue," "Suspected Rogue") specifies the category of the classification. Like the match method, it helps understand the classification but does not aid in physically locating the device.
The HPE Aruba Networking AOS-8 8.11 User Guide states:
"When a rogue AP is detected by the Wireless Intrusion Prevention (WIP) system, the ‘detecting devices’ information lists the authorized APs or radios that detected the rogue AP’s signal. This is the most useful information for locating the rogue device, as it provides the physical locations of the detecting APs. By analyzing the signal strength (RSSI) reported by each detecting device, you can triangulate the approximate location of the rogue AP. For example, if AP-1 and AP-2 detect the rogue AP, and AP-1 reports a higher RSSI, the rogue AP is likely closer to AP-1." (Page 416, Rogue AP Detection Section)
Additionally, the HPE Aruba Networking Security Guide notes:
"To locate a rogue AP, use the ‘detecting devices’ information in the AOS Detected Radios page. This lists the APs that detected the rogue AP, along with signal strength data, enabling triangulation to pinpoint the rogue device’s location." (Page 80, Locating Rogue APs Section)
What is a correct guideline for the management protocols that you should use on AOS-CX switches?
Make sure that SSH is disabled and use HTTPS instead.
Make sure that Telnet is disabled and use SSH instead.
Make sure that Telnet is disabled and use TFTP instead.
Make sure that HTTPS is disabled and use SSH instead.
AOS-CX switches support various management protocols for administrative access, such as SSH, Telnet, HTTPS, and TFTP. Security best practices for managing network devices, including AOS-CX switches, emphasize using secure protocols to protect management traffic from eavesdropping and unauthorized access.
Option B, "Make sure that Telnet is disabled and use SSH instead," is correct. Telnet is an insecure protocol because it sends all data, including credentials, in plaintext, making it vulnerable to eavesdropping. SSH (Secure Shell) provides encrypted communication for remote management, ensuring that credentials and commands are protected. HPE Aruba Networking recommends disabling Telnet and enabling SSH for secure management access on AOS-CX switches.
Option A, "Make sure that SSH is disabled and use HTTPS instead," is incorrect. SSH and HTTPS serve different purposes: SSH is for CLI access, while HTTPS is for web-based management. Disabling SSH would prevent secure CLI access, which is not a recommended practice. Both SSH and HTTPS should be enabled for secure management.
Option C, "Make sure that Telnet is disabled and use TFTP instead," is incorrect. TFTP (Trivial File Transfer Protocol) is used for file transfers (e.g., firmware updates), not for management access like Telnet or SSH. TFTP is also insecure (no encryption), so it’s not a suitable replacement for Telnet.
Option D, "Make sure that HTTPS is disabled and use SSH instead," is incorrect. HTTPS is used for secure web-based management and should not be disabled. Both HTTPS and SSH are secure protocols and should be used together for different management interfaces (web and CLI, respectively).
The HPE Aruba Networking AOS-CX 10.12 Security Guide states:
"For secure management of AOS-CX switches, disable insecure protocols like Telnet, which sends data in plaintext, and use SSH instead. SSH provides encrypted communication for CLI access, protecting credentials and commands from eavesdropping. Use the command no telnet-server to disable Telnet and ssh-server to enable SSH. Additionally, enable HTTPS for web-based management with https-server to ensure all management traffic is encrypted." (Page 195, Secure Management Protocols Section)
Additionally, the HPE Aruba Networking Security Best Practices Guide notes:
"A key guideline for managing AOS-CX switches is to disable Telnet and enable SSH for CLI access. Telnet is insecure and should not be used in production environments, as it transmits credentials in plaintext. SSH ensures secure remote management, and HTTPS should also be enabled for web access." (Page 25, Management Security Section)
Which is an accurate description of a type of malware?
Worms are usually delivered in spear-phishing attacks and require users to open and run a file.
Rootkits can help hackers gain elevated access to a system and often actively conceal themselves from detection.
A Trojan is any type of malware that replicates itself and spreads to other systems automatically.
Malvertising can only infect a system if the user encounters the malware on an untrustworthy site.
Malware (malicious software) is a broad category of software designed to harm or exploit systems. HPE Aruba Networking documentation often discusses malware in the context of network security threats and mitigation strategies, such as those detected by the Wireless Intrusion Prevention (WIP) system.
Option A, "Worms are usually delivered in spear-phishing attacks and require users to open and run a file," is incorrect. Worms are a type of malware that replicate and spread automatically across networks without user interaction (e.g., by exploiting vulnerabilities). They are not typically delivered via spear-phishing, which is more associated with Trojans or ransomware. Worms do not require users to open and run a file; that behavior is characteristic of Trojans.
Option B, "Rootkits can help hackers gain elevated access to a system and often actively conceal themselves from detection," is correct. A rootkit is a type of malware that provides hackers with privileged (elevated) access to a system, often by modifying the operating system or kernel. Rootkits are designed to hide their presence (e.g., by concealing processes, files, or network connections) to evade detection by antivirus software or system administrators, making them a stealthy and dangerous type of malware.
Option C, "A Trojan is any type of malware that replicates itself and spreads to other systems automatically," is incorrect. A Trojan is a type of malware that disguises itself as legitimate software to trick users into installing it. Unlike worms, Trojans do not replicate or spread automatically; they require user interaction (e.g., downloading and running a file) to infect a system.
Option D, "Malvertising can only infect a system if the user encounters the malware on an untrustworthy site," is incorrect. Malvertising (malicious advertising) involves embedding malware in online ads, which can appear on both trustworthy and untrustworthy sites. For example, a legitimate website might unknowingly serve a malicious ad that exploits a browser vulnerability to infect the user’s system, even without the user clicking the ad.
The HPE Aruba Networking Security Guide states:
"Rootkits are a type of malware that can help hackers gain elevated access to a system by modifying the operating system or kernel. They often actively conceal themselves from detection by hiding processes, files, or network connections, making them difficult to detect and remove. Rootkits are commonly used to maintain persistent access to a compromised system." (Page 22, Malware Types Section)
Additionally, the HPE Aruba Networking AOS-8 8.11 User Guide notes:
"The Wireless Intrusion Prevention (WIP) system can detect various types of malware. Rootkits, for example, are designed to provide hackers with elevated access and often conceal themselves to evade detection, allowing the hacker to maintain control over the infected system for extended periods." (Page 421, Malware Threats Section)
Copyright © 2021-2025 CertsTopics. All Rights Reserved