Summer Special - Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: top65certs

Free and Premium Google Professional-Data-Engineer Dumps Questions Answers

Google Professional Data Engineer Exam Questions and Answers

Question 1

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Question 2

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Question 3

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Question 4

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Question 5

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor=<actorname> ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Question 6

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Question 7

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Question 8

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Question 9

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Question 10

You are building an application to share financial market data with consumers, who will receive data feeds. Data is collected from the markets in real time. Consumers will receive the data in the following ways:

    Real-time event stream

    ANSI SQL access to real-time stream and historical data

    Batch historical exports

Which solution should you use?

Options:

A.

Cloud Dataflow, Cloud SQL, Cloud Spanner

B.

Cloud Pub/Sub, Cloud Storage, BigQuery

C.

Cloud Dataproc, Cloud Dataflow, BigQuery

D.

Cloud Pub/Sub, Cloud Dataproc, Cloud SQL

Question 11

You are designing a pipeline that publishes application events to a Pub/Sub topic. You need to aggregate events across hourly intervals before loading the results to BigQuery for analysis. Your solution must be scalable so it can process and load large volumes of events to BigQuery. What should you do?

Options:

A.

Create a streaming Dataflow job to continually read from the Pub/Sub topic and perform the necessary aggregations using tumbling windows

B.

Schedule a batch Dataflow job to run hourly, pulling all available messages from the Pub-Sub topic and performing the necessary aggregations

C.

Schedule a Cloud Function to run hourly, pulling all avertable messages from the Pub/Sub topic and performing the necessary aggregations

D.

Create a Cloud Function to perform the necessary data processing that executes using the Pub/Sub trigger every time a new message is published to the topic.

Question 12

You are architecting a data transformation solution for BigQuery. Your developers are proficient with SOL and want to use the ELT development technique. In addition, your developers need an intuitive coding environment and the ability to manage SQL as code. You need to identify a solution for your developers to build these pipelines. What should you do?

Options:

A.

Use Cloud Composer to load data and run SQL pipelines by using the BigQuery job operators.

B.

Use Dataflow jobs to read data from Pub/Sub, transform the data, and load the data to BigQuery.

C.

Use Dataform to build, manage, and schedule SQL pipelines.

D.

Use Data Fusion to build and execute ETL pipelines

Question 13

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?

Options:

A.

Set a single global window to capture all the data.

B.

Set sliding windows to capture all the lagged data.

C.

Use watermarks and timestamps to capture the lagged data.

D.

Ensure every datasource type (stream or batch) has a timestamp, and use the timestamps to define the logic for lagged data.

Question 14

Your company's data platform ingests CSV file dumps of booking and user profile data from upstream sources into Cloud Storage. The data analyst team wants to join these datasets on the email field available in both the datasets to perform analysis. However, personally identifiable information (PII) should not be accessible to the analysts. You need to de-identify the email field in both the datasets before loading them into BigQuery for analysts. What should you do?

Options:

A.

1. Create a pipeline to de-identify the email field by using recordTransformations in Cloud Data Loss Prevention (Cloud DLP) with masking as the de-identification transformations type.

2. Load the booking and user profile data into a BigQuery table.

B.

1. Create a pipeline to de-identify the email field by using recordTransformations in Cloud DLP with format-preserving encryption with FFX as the de-identification transformation type.

2. Load the booking and user profile data into a BigQuery table.

C.

1. Load the CSV files from Cloud Storage into a BigQuery table, and enable dynamic data masking.

2. Create a policy tag with the email mask as the data masking rule.

3. Assign the policy to the email field in both tables. A

4. Assign the Identity and Access Management bigquerydatapolicy.maskedReader role for the BigQuery tables to the analysts.

D.

1. Load the CSV files from Cloud Storage into a BigQuery table, and enable dynamic data masking.

2. Create a policy tag with the default masking value as the data masking rule.

3. Assign the policy to the email field in both tables.

4. Assign the Identity and Access Management bigquerydatapolicy.maskedReader role for the BigQuery tables to the analysts

Question 15

Your company is currently setting up data pipelines for their campaign. For all the Google Cloud Pub/Sub

streaming data, one of the important business requirements is to be able to periodically identify the inputs and their timings during their campaign. Engineers have decided to use windowing and transformation in Google Cloud Dataflow for this purpose. However, when testing this feature, they find that the Cloud Dataflow job fails for the all streaming insert. What is the most likely cause of this problem?

Options:

A.

They have not assigned the timestamp, which causes the job to fail

B.

They have not set the triggers to accommodate the data coming in late, which causes the job to fail

C.

They have not applied a global windowing function, which causes the job to fail when the pipeline is

created

D.

They have not applied a non-global windowing function, which causes the job to fail when the pipeline is created

Question 16

You have uploaded 5 years of log data to Cloud Storage A user reported that some data points in the log data are outside of their expected ranges, which indicates errors You need to address this issue and be able to run the process again in the future while keeping the original data for compliance reasons. What should you do?

Options:

A.

Import the data from Cloud Storage into BigQuery Create a new BigQuery table, and skip the rows with errors.

B.

Create a Compute Engine instance and create a new copy of the data in Cloud Storage Skip the rows with errors

C.

Create a Cloud Dataflow workflow that reads the data from Cloud Storage, checks for values outside the expected range, sets the value to an appropriate default, and writes the updated records to a new dataset in

Cloud Storage

D.

Create a Cloud Dataflow workflow that reads the data from Cloud Storage, checks for values outside the expected range, sets the value to an appropriate default, and writes the updated records to the same dataset in Cloud Storage

Question 17

The marketing team at your organization provides regular updates of a segment of your customer dataset. The marketing team has given you a CSV with 1 million records that must be updated in BigQuery. When you use the UPDATE statement in BigQuery, you receive a quotaExceeded error. What should you do?

Options:

A.

Reduce the number of records updated each day to stay within the BigQuery UPDATE DML statement limit.

B.

Increase the BigQuery UPDATE DML statement limit in the Quota management section of the Google Cloud Platform Console.

C.

Split the source CSV file into smaller CSV files in Cloud Storage to reduce the number of BigQuery UPDATE DML statements per BigQuery job.

D.

Import the new records from the CSV file into a new BigQuery table. Create a BigQuery job that merges the new records with the existing records and writes the results to a new BigQuery table.

Question 18

A data scientist has created a BigQuery ML model and asks you to create an ML pipeline to serve predictions. You have a REST API application with the requirement to serve predictions for an individual user ID with latency under 100 milliseconds. You use the following query to generate predictions: SELECT predicted_label, user_id FROM ML.PREDICT (MODEL ‘dataset.model’, table user_features). How should you create the ML pipeline?

Options:

A.

Add a WHERE clause to the query, and grant the BigQuery Data Viewer role to the application service account.

B.

Create an Authorized View with the provided query. Share the dataset that contains the view with the application service account.

C.

Create a Cloud Dataflow pipeline using BigQueryIO to read results from the query. Grant the Dataflow Worker role to the application service account.

D.

Create a Cloud Dataflow pipeline using BigQueryIO to read predictions for all users from the query. Write the results to Cloud Bigtable using BigtableIO. Grant the Bigtable Reader role to the application service account so that the application can read predictions for individual users from Cloud Bigtable.

Question 19

You have a network of 1000 sensors. The sensors generate time series data: one metric per sensor per second, along with a timestamp. You already have 1 TB of data, and expect the data to grow by 1 GB every day You need to access this data in two ways. The first access pattern requires retrieving the metric from one specific sensor stored at a specific timestamp, with a median single-digit millisecond latency. The second access pattern requires running complex analytic queries on the data, including joins, once a day. How should you store this data?

Options:

A.

Store your data in Bigtable Concatenate the sensor ID and timestamp and use it as the row key Perform an export to BigQuery every day.

B.

Store your data in BigQuery Concatenate the sensor ID and timestamp. and use it as the primary key.

C.

Store your data in Bigtable Concatenate the sensor ID and metric, and use it as the row key Perform an export to BigQuery every day.

D.

Store your data in BigQuery. Use the metric as a primary key.

Question 20

Which of these statements about BigQuery caching is true?

Options:

A.

By default, a query's results are not cached.

B.

BigQuery caches query results for 48 hours.

C.

Query results are cached even if you specify a destination table.

D.

There is no charge for a query that retrieves its results from cache.

Question 21

Which of the following is NOT one of the three main types of triggers that Dataflow supports?

Options:

A.

Trigger based on element size in bytes

B.

Trigger that is a combination of other triggers

C.

Trigger based on element count

D.

Trigger based on time

Question 22

What are two methods that can be used to denormalize tables in BigQuery?

Options:

A.

1) Split table into multiple tables; 2) Use a partitioned table

B.

1) Join tables into one table; 2) Use nested repeated fields

C.

1) Use a partitioned table; 2) Join tables into one table

D.

1) Use nested repeated fields; 2) Use a partitioned table

Question 23

What is the general recommendation when designing your row keys for a Cloud Bigtable schema?

Options:

A.

Include multiple time series values within the row key

B.

Keep the row keep as an 8 bit integer

C.

Keep your row key reasonably short

D.

Keep your row key as long as the field permits

Question 24

Does Dataflow process batch data pipelines or streaming data pipelines?

Options:

A.

Only Batch Data Pipelines

B.

Both Batch and Streaming Data Pipelines

C.

Only Streaming Data Pipelines

D.

None of the above

Question 25

Which Cloud Dataflow / Beam feature should you use to aggregate data in an unbounded data source every hour based on the time when the data entered the pipeline?

Options:

A.

An hourly watermark

B.

An event time trigger

C.

The with Allowed Lateness method

D.

A processing time trigger

Question 26

Which is not a valid reason for poor Cloud Bigtable performance?

Options:

A.

The workload isn't appropriate for Cloud Bigtable.

B.

The table's schema is not designed correctly.

C.

The Cloud Bigtable cluster has too many nodes.

D.

There are issues with the network connection.

Question 27

What is the HBase Shell for Cloud Bigtable?

Options:

A.

The HBase shell is a GUI based interface that performs administrative tasks, such as creating and deleting tables.

B.

The HBase shell is a command-line tool that performs administrative tasks, such as creating and deleting tables.

C.

The HBase shell is a hypervisor based shell that performs administrative tasks, such as creating and deleting new virtualized instances.

D.

The HBase shell is a command-line tool that performs only user account management functions to grant access to Cloud Bigtable instances.

Question 28

Which of these sources can you not load data into BigQuery from?

Options:

A.

File upload

B.

Google Drive

C.

Google Cloud Storage

D.

Google Cloud SQL

Question 29

Which software libraries are supported by Cloud Machine Learning Engine?

Options:

A.

Theano and TensorFlow

B.

Theano and Torch

C.

TensorFlow

D.

TensorFlow and Torch

Question 30

Which of these operations can you perform from the BigQuery Web UI?

Options:

A.

Upload a file in SQL format.

B.

Load data with nested and repeated fields.

C.

Upload a 20 MB file.

D.

Upload multiple files using a wildcard.

Question 31

When running a pipeline that has a BigQuery source, on your local machine, you continue to get permission denied errors. What could be the reason for that?

Options:

A.

Your gcloud does not have access to the BigQuery resources

B.

BigQuery cannot be accessed from local machines

C.

You are missing gcloud on your machine

D.

Pipelines cannot be run locally

Question 32

The CUSTOM tier for Cloud Machine Learning Engine allows you to specify the number of which types of cluster nodes?

Options:

A.

Workers

B.

Masters, workers, and parameter servers

C.

Workers and parameter servers

D.

Parameter servers

Question 33

Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?

Options:

A.

categorical_column_with_vocabulary_list

B.

categorical_column_with_hash_bucket

C.

categorical_column_with_unknown_values

D.

sparse_column_with_keys

Question 34

To give a user read permission for only the first three columns of a table, which access control method would you use?

Options:

A.

Primitive role

B.

Predefined role

C.

Authorized view

D.

It's not possible to give access to only the first three columns of a table.

Question 35

You have a job that you want to cancel. It is a streaming pipeline, and you want to ensure that any data that is in-flight is processed and written to the output. Which of the following commands can you use on the Dataflow monitoring console to stop the pipeline job?

Options:

A.

Cancel

B.

Drain

C.

Stop

D.

Finish

Question 36

If you want to create a machine learning model that predicts the price of a particular stock based on its recent price history, what type of estimator should you use?

Options:

A.

Unsupervised learning

B.

Regressor

C.

Classifier

D.

Clustering estimator

Question 37

By default, which of the following windowing behavior does Dataflow apply to unbounded data sets?

Options:

A.

Windows at every 100 MB of data

B.

Single, Global Window

C.

Windows at every 1 minute

D.

Windows at every 10 minutes

Question 38

You are planning to use Google's Dataflow SDK to analyze customer data such as displayed below. Your project requirement is to extract only the customer name from the data source and then write to an output PCollection.

Tom,555 X street

Tim,553 Y street

Sam, 111 Z street

Which operation is best suited for the above data processing requirement?

Options:

A.

ParDo

B.

Sink API

C.

Source API

D.

Data extraction

Question 39

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Question 40

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Question 41

You need to compose visualization for operations teams with the following requirements:

    Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

    The report must not be more than 3 hours delayed from live data.

    The actionable report should only show suboptimal links.

    Most suboptimal links should be sorted to the top.

    Suboptimal links can be grouped and filtered by regional geography.

    User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possible

combination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possible

combination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Question 42

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Question 43

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Question 44

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Question 45

MJTelco is building a custom interface to share data. They have these requirements:

    They need to do aggregations over their petabyte-scale datasets.

    They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Question 46

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Question 47

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Question 48

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Question 49

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Question 50

You are building a model to make clothing recommendations. You know a user’s fashion preference is likely to change over time, so you build a data pipeline to stream new data back to the model as it becomes available. How should you use this data to train the model?

Options:

A.

Continuously retrain the model on just the new data.

B.

Continuously retrain the model on a combination of existing data and the new data.

C.

Train on the existing data while using the new data as your test set.

D.

Train on the new data while using the existing data as your test set.

Question 51

You are designing a basket abandonment system for an ecommerce company. The system will send a message to a user based on these rules:

    No interaction by the user on the site for 1 hour

    Has added more than $30 worth of products to the basket

    Has not completed a transaction

You use Google Cloud Dataflow to process the data and decide if a message should be sent. How should you design the pipeline?

Options:

A.

Use a fixed-time window with a duration of 60 minutes.

B.

Use a sliding time window with a duration of 60 minutes.

C.

Use a session window with a gap time duration of 60 minutes.

D.

Use a global window with a time based trigger with a delay of 60 minutes.

Question 52

Your company is streaming real-time sensor data from their factory floor into Bigtable and they have noticed extremely poor performance. How should the row key be redesigned to improve Bigtable performance on queries that populate real-time dashboards?

Options:

A.

Use a row key of the form .

B.

Use a row key of the form .

C.

Use a row key of the form #.

D.

Use a row key of the form >##.

Question 53

Your company built a TensorFlow neural-network model with a large number of neurons and layers. The model fits well for the training data. However, when tested against new data, it performs poorly. What method can you employ to address this?

Options:

A.

Threading

B.

Serialization

C.

Dropout Methods

D.

Dimensionality Reduction

Question 54

You want to use Google Stackdriver Logging to monitor Google BigQuery usage. You need an instant notification to be sent to your monitoring tool when new data is appended to a certain table using an insert job, but you do not want to receive notifications for other tables. What should you do?

Options:

A.

Make a call to the Stackdriver API to list all logs, and apply an advanced filter.

B.

In the Stackdriver logging admin interface, and enable a log sink export to BigQuery.

C.

In the Stackdriver logging admin interface, enable a log sink export to Google Cloud Pub/Sub, and subscribe to the topic from your monitoring tool.

D.

Using the Stackdriver API, create a project sink with advanced log filter to export to Pub/Sub, and subscribe to the topic from your monitoring tool.

Question 55

Your company’s on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for-like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?

Options:

A.

Put the data into Google Cloud Storage.

B.

Use preemptible virtual machines (VMs) for the Cloud Dataproc cluster.

C.

Tune the Cloud Dataproc cluster so that there is just enough disk for all data.

D.

Migrate some of the cold data into Google Cloud Storage, and keep only the hot data in Persistent Disk.

Question 56

Your software uses a simple JSON format for all messages. These messages are published to Google Cloud Pub/Sub, then processed with Google Cloud Dataflow to create a real-time dashboard for the CFO. During testing, you notice that some messages are missing in thedashboard. You check the logs, and all messages are being published to Cloud Pub/Sub successfully. What should you do next?

Options:

A.

Check the dashboard application to see if it is not displaying correctly.

B.

Run a fixed dataset through the Cloud Dataflow pipeline and analyze the output.

C.

Use Google Stackdriver Monitoring on Cloud Pub/Sub to find the missing messages.

D.

Switch Cloud Dataflow to pull messages from Cloud Pub/Sub instead of Cloud Pub/Sub pushing messages to Cloud Dataflow.

Question 57

Your company uses a proprietary system to send inventory data every 6 hours to a data ingestion service in the cloud. Transmitted data includes a payload of several fields and the timestamp of the transmission. If there are any concerns about a transmission, the system re-transmits the data. How should you deduplicate the data most efficiency?

Options:

A.

Assign global unique identifiers (GUID) to each data entry.

B.

Compute the hash value of each data entry, and compare it with all historical data.

C.

Store each data entry as the primary key in a separate database and apply an index.

D.

Maintain a database table to store the hash value and other metadata for each data entry.