New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Generative-AI-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Generative-AI-Engineer-Associate
Exam Name:
Databricks Certified Generative AI Engineer Associate
Certification:
Vendor:
Questions:
61
Last Updated:
Jan 14, 2026
Exam Status:
Stable
Databricks Databricks-Generative-AI-Engineer-Associate

Databricks-Generative-AI-Engineer-Associate: Generative AI Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Generative-AI-Engineer-Associate (Databricks Certified Generative AI Engineer Associate) exam? Download the most recent Databricks Databricks-Generative-AI-Engineer-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Generative-AI-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Generative-AI-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Generative-AI-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Generative AI Engineer Associate) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Generative-AI-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Generative-AI-Engineer-Associate practice exam demo.

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative AI Engineer developed an LLM application using the provisioned throughput Foundation Model API. Now that the application is ready to be deployed, they realize their volume of requests are not sufficiently high enough to create their own provisioned throughput endpoint. They want to choose a strategy that ensures the best cost-effectiveness for their application.

What strategy should the Generative AI Engineer use?

Options:

A.

Switch to using External Models instead

B.

Deploy the model using pay-per-token throughput as it comes with cost guarantees

C.

Change to a model with a fewer number of parameters in order to reduce hardware constraint issues

D.

Throttle the incoming batch of requests manually to avoid rate limiting issues

Buy Now
Question 2

A Generative Al Engineer has developed an LLM application to answer questions about internal company policies. The Generative AI Engineer must ensure that the application doesn’t hallucinate or leak confidential data.

Which approach should NOT be used to mitigate hallucination or confidential data leakage?

Options:

A.

Add guardrails to filter outputs from the LLM before it is shown to the user

B.

Fine-tune the model on your data, hoping it will learn what is appropriate and not

C.

Limit the data available based on the user’s access level

D.

Use a strong system prompt to ensure the model aligns with your needs.

Question 3

A Generative Al Engineer is deciding between using LSH (Locality Sensitive Hashing) and HNSW (Hierarchical Navigable Small World) for indexing their vector database Their top priority is semantic accuracy

Which approach should the Generative Al Engineer use to evaluate these two techniques?

Options:

A.

Compare the cosine similarities of the embeddings of returned results against those of a representative sample of test inputs

B.

Compare the Bilingual Evaluation Understudy (BLEU) scores of returned results for a representative sample of test inputs

C.

Compare the Recall-Onented-Understudy for Gistmg Evaluation (ROUGE) scores of returned results for a representative sample of test inputs

D.

Compare the Levenshtein distances of returned results against a representative sample of test inputs