New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Generative-AI-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Generative-AI-Engineer-Associate
Exam Name:
Databricks Certified Generative AI Engineer Associate
Certification:
Vendor:
Questions:
61
Last Updated:
Jan 5, 2026
Exam Status:
Stable
Databricks Databricks-Generative-AI-Engineer-Associate

Databricks-Generative-AI-Engineer-Associate: Generative AI Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Generative-AI-Engineer-Associate (Databricks Certified Generative AI Engineer Associate) exam? Download the most recent Databricks Databricks-Generative-AI-Engineer-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Generative-AI-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Generative-AI-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Generative-AI-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Generative AI Engineer Associate) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Generative-AI-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Generative-AI-Engineer-Associate practice exam demo.

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative Al Engineer needs to design an LLM pipeline to conduct multi-stage reasoning that leverages external tools. To be effective at this, the LLM will need to plan and adapt actions while performing complex reasoning tasks.

Which approach will do this?

Options:

A.

Tram the LLM to generate a single, comprehensive response without interacting with any external tools, relying solely on its pre-trained knowledge.

B.

Implement a framework like ReAct which allows the LLM to generate reasoning traces and perform task-specific actions that leverage external tools if necessary.

C.

Encourage the LLM to make multiple API calls in sequence without planning or structuring the calls, allowing the LLM to decide when and how to use external tools spontaneously.

D.

Use a Chain-of-Thought (CoT) prompting technique to guide the LLM through a series of reasoning steps, then manually input the results from external tools for the final answer.

Buy Now
Question 2

A Generative Al Engineer wants their (inetuned LLMs in their prod Databncks workspace available for testing in their dev workspace as well. All of their workspaces are Unity Catalog enabled and they are currently logging their models into the Model Registry in MLflow.

What is the most cost-effective and secure option for the Generative Al Engineer to accomplish their gAi?

Options:

A.

Use an external model registry which can be accessed from all workspaces

B.

Setup a script to export the model from prod and import it to dev.

C.

Setup a duplicate training pipeline in dev, so that an identical model is available in dev.

D.

Use MLflow to log the model directly into Unity Catalog, and enable READ access in the dev workspace to the model.

Question 3

A Generative Al Engineer is building a RAG application that answers questions about internal documents for the company SnoPen AI.

The source documents may contain a significant amount of irrelevant content, such as advertisements, sports news, or entertainment news, or content about other companies.

Which approach is advisable when building a RAG application to achieve this goal of filtering irrelevant information?

Options:

A.

Keep all articles because the RAG application needs to understand non-company content to avoid answering questions about them.

B.

Include in the system prompt that any information it sees will be about SnoPenAI, even if no data filtering is performed.

C.

Include in the system prompt that the application is not supposed to answer any questions unrelated to SnoPen Al.

D.

Consolidate all SnoPen AI related documents into a single chunk in the vector database.