New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Generative-AI-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Generative-AI-Engineer-Associate
Exam Name:
Databricks Certified Generative AI Engineer Associate
Certification:
Vendor:
Questions:
61
Last Updated:
Jan 11, 2026
Exam Status:
Stable
Databricks Databricks-Generative-AI-Engineer-Associate

Databricks-Generative-AI-Engineer-Associate: Generative AI Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Generative-AI-Engineer-Associate (Databricks Certified Generative AI Engineer Associate) exam? Download the most recent Databricks Databricks-Generative-AI-Engineer-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Generative-AI-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Generative-AI-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Generative-AI-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Generative AI Engineer Associate) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Generative-AI-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Generative-AI-Engineer-Associate practice exam demo.

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative Al Engineer wants their (inetuned LLMs in their prod Databncks workspace available for testing in their dev workspace as well. All of their workspaces are Unity Catalog enabled and they are currently logging their models into the Model Registry in MLflow.

What is the most cost-effective and secure option for the Generative Al Engineer to accomplish their gAi?

Options:

A.

Use an external model registry which can be accessed from all workspaces

B.

Setup a script to export the model from prod and import it to dev.

C.

Setup a duplicate training pipeline in dev, so that an identical model is available in dev.

D.

Use MLflow to log the model directly into Unity Catalog, and enable READ access in the dev workspace to the model.

Buy Now
Question 2

After changing the response generating LLM in a RAG pipeline from GPT-4 to a model with a shorter context length that the company self-hosts, the Generative AI Engineer is getting the following error:

What TWO solutions should the Generative AI Engineer implement without changing the response generating model? (Choose two.)

Options:

A.

Use a smaller embedding model to generate

B.

Reduce the maximum output tokens of the new model

C.

Decrease the chunk size of embedded documents

D.

Reduce the number of records retrieved from the vector database

E.

Retrain the response generating model using ALiBi

Question 3

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

Options:

A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.