New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Generative-AI-Engineer-Associate Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Generative-AI-Engineer-Associate
Exam Name:
Databricks Certified Generative AI Engineer Associate
Certification:
Vendor:
Questions:
61
Last Updated:
Jan 10, 2026
Exam Status:
Stable
Databricks Databricks-Generative-AI-Engineer-Associate

Databricks-Generative-AI-Engineer-Associate: Generative AI Engineer Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Generative-AI-Engineer-Associate (Databricks Certified Generative AI Engineer Associate) exam? Download the most recent Databricks Databricks-Generative-AI-Engineer-Associate braindumps with answers that are 100% real. After downloading the Databricks Databricks-Generative-AI-Engineer-Associate exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Generative-AI-Engineer-Associate exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Generative-AI-Engineer-Associate exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Generative AI Engineer Associate) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Generative-AI-Engineer-Associate test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Generative-AI-Engineer-Associate practice exam demo.

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative Al Engineer needs to design an LLM pipeline to conduct multi-stage reasoning that leverages external tools. To be effective at this, the LLM will need to plan and adapt actions while performing complex reasoning tasks.

Which approach will do this?

Options:

A.

Tram the LLM to generate a single, comprehensive response without interacting with any external tools, relying solely on its pre-trained knowledge.

B.

Implement a framework like ReAct which allows the LLM to generate reasoning traces and perform task-specific actions that leverage external tools if necessary.

C.

Encourage the LLM to make multiple API calls in sequence without planning or structuring the calls, allowing the LLM to decide when and how to use external tools spontaneously.

D.

Use a Chain-of-Thought (CoT) prompting technique to guide the LLM through a series of reasoning steps, then manually input the results from external tools for the final answer.

Buy Now
Question 2

A Generative AI Engineer has been asked to build an LLM-based question-answering application. The application should take into account new documents that are frequently published. The engineer wants to build this application with the least cost and least development effort and have it operate at the lowest cost possible.

Which combination of chaining components and configuration meets these requirements?

Options:

A.

For the application a prompt, a retriever, and an LLM are required. The retriever output is inserted into the prompt which is given to the LLM to generate answers.

B.

The LLM needs to be frequently with the new documents in order to provide most up-to-date answers.

C.

For the question-answering application, prompt engineering and an LLM are required to generate answers.

D.

For the application a prompt, an agent and a fine-tuned LLM are required. The agent is used by the LLM to retrieve relevant content that is inserted into the prompt which is given to the LLM to generate answers.

Question 3

A Generative Al Engineer has developed an LLM application to answer questions about internal company policies. The Generative AI Engineer must ensure that the application doesn’t hallucinate or leak confidential data.

Which approach should NOT be used to mitigate hallucination or confidential data leakage?

Options:

A.

Add guardrails to filter outputs from the LLM before it is shown to the user

B.

Fine-tune the model on your data, hoping it will learn what is appropriate and not

C.

Limit the data available based on the user’s access level

D.

Use a strong system prompt to ensure the model aligns with your needs.