New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Certified-Professional-Data-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Certified-Professional-Data-Engineer
Exam Name:
Databricks Certified Data Engineer Professional Exam
Certification:
Vendor:
Questions:
195
Last Updated:
Dec 29, 2025
Exam Status:
Stable
Databricks Databricks-Certified-Professional-Data-Engineer

Databricks-Certified-Professional-Data-Engineer: Databricks Certification Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Certified-Professional-Data-Engineer (Databricks Certified Data Engineer Professional Exam) exam? Download the most recent Databricks Databricks-Certified-Professional-Data-Engineer braindumps with answers that are 100% real. After downloading the Databricks Databricks-Certified-Professional-Data-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Certified-Professional-Data-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Certified-Professional-Data-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Data Engineer Professional Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Certified-Professional-Data-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Certified-Professional-Data-Engineer practice exam demo.

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

The view updates represents an incremental batch of all newly ingested data to be inserted or updated in the customers table.

The following logic is used to process these records.

MERGE INTO customers

USING (

SELECT updates.customer_id as merge_ey, updates .*

FROM updates

UNION ALL

SELECT NULL as merge_key, updates .*

FROM updates JOIN customers

ON updates.customer_id = customers.customer_id

WHERE customers.current = true AND updates.address <> customers.address

) staged_updates

ON customers.customer_id = mergekey

WHEN MATCHED AND customers. current = true AND customers.address <> staged_updates.address THEN

UPDATE SET current = false, end_date = staged_updates.effective_date

WHEN NOT MATCHED THEN

INSERT (customer_id, address, current, effective_date, end_date)

VALUES (staged_updates.customer_id, staged_updates.address, true, staged_updates.effective_date, null)

Which statement describes this implementation?

    The customers table is implemented as a Type 2 table; old values are overwritten and new customers are appended.

Options:

A.

The customers table is implemented as a Type 1 table; old values are overwritten by new values and no history is maintained.

B.

The customers table is implemented as a Type 2 table; old values are maintained but marked as no longer current and new values are inserted.

C.

The customers table is implemented as a Type 0 table; all writes are append only with no changes to existing values.

Buy Now
Question 2

A DLT pipeline includes the following streaming tables:

Raw_lot ingest raw device measurement data from a heart rate tracking device.

Bgm_stats incrementally computes user statistics based on BPM measurements from raw_lot.

How can the data engineer configure this pipeline to be able to retain manually deleted or updated records in the raw_iot table while recomputing the downstream table when a pipeline update is run?

Options:

A.

Set the skipChangeCommits flag to true on bpm_stats

B.

Set the SkipChangeCommits flag to true raw_lot

C.

Set the pipelines, reset, allowed property to false on bpm_stats

D.

Set the pipelines, reset, allowed property to false on raw_iot

Question 3

What statement is true regarding the retention of job run history?

Options:

A.

It is retained until you export or delete job run logs

B.

It is retained for 30 days, during which time you can deliver job run logs to DBFS or S3

C.

t is retained for 60 days, during which you can export notebook run results to HTML

D.

It is retained for 60 days, after which logs are archived

E.

It is retained for 90 days or until the run-id is re-used through custom run configuration