New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Certified-Professional-Data-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Certified-Professional-Data-Engineer
Exam Name:
Databricks Certified Data Engineer Professional Exam
Certification:
Vendor:
Questions:
195
Last Updated:
Dec 24, 2025
Exam Status:
Stable
Databricks Databricks-Certified-Professional-Data-Engineer

Databricks-Certified-Professional-Data-Engineer: Databricks Certification Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Certified-Professional-Data-Engineer (Databricks Certified Data Engineer Professional Exam) exam? Download the most recent Databricks Databricks-Certified-Professional-Data-Engineer braindumps with answers that are 100% real. After downloading the Databricks Databricks-Certified-Professional-Data-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Certified-Professional-Data-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Certified-Professional-Data-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Data Engineer Professional Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Certified-Professional-Data-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Certified-Professional-Data-Engineer practice exam demo.

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Incremental state information should be maintained for 10 minutes for late-arriving data.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

Options:

A.

withWatermark("event_time", "10 minutes")

B.

awaitArrival("event_time", "10 minutes")

C.

await("event_time + ‘10 minutes'")

D.

slidingWindow("event_time", "10 minutes")

E.

delayWrite("event_time", "10 minutes")

Buy Now
Question 2

An upstream system is emitting change data capture (CDC) logs that are being written to a cloud object storage directory. Each record in the log indicates the change type (insert, update, or delete) and the values for each field after the change. The source table has a primary key identified by the field pk_id.

For auditing purposes, the data governance team wishes to maintain a full record of all values that have ever been valid in the source system. For analytical purposes, only the most recent value for each record needs to be recorded. The Databricks job to ingest these records occurs once per hour, but each individual record may have changed multiple times over the course of an hour.

Which solution meets these requirements?

Options:

A.

Create a separate history table for each pk_id resolve the current state of the table by running a union all filtering the history tables for the most recent state.

B.

Use merge into to insert, update, or delete the most recent entry for each pk_id into a bronze table, then propagate all changes throughout the system.

C.

Iterate through an ordered set of changes to the table, applying each in turn; rely on Delta Lake's versioning ability to create an audit log.

D.

Use Delta Lake's change data feed to automatically process CDC data from an external system, propagating all changes to all dependent tables in the Lakehouse.

E.

Ingest all log information into a bronze table; use merge into to insert, update, or delete the most recent entry for each pk_id into a silver table to recreate the current table state.

Question 3

A Delta Lake table representing metadata about content from user has the following schema:

user_id LONG, post_text STRING, post_id STRING, longitude FLOAT, latitude FLOAT, post_time TIMESTAMP, date DATE

Based on the above schema, which column is a good candidate for partitioning the Delta Table?

Options:

A.

Date

B.

Post_id

C.

User_id

D.

Post_time