New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Certified-Professional-Data-Engineer Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Certified-Professional-Data-Engineer
Exam Name:
Databricks Certified Data Engineer Professional Exam
Certification:
Vendor:
Questions:
195
Last Updated:
Jan 13, 2026
Exam Status:
Stable
Databricks Databricks-Certified-Professional-Data-Engineer

Databricks-Certified-Professional-Data-Engineer: Databricks Certification Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Certified-Professional-Data-Engineer (Databricks Certified Data Engineer Professional Exam) exam? Download the most recent Databricks Databricks-Certified-Professional-Data-Engineer braindumps with answers that are 100% real. After downloading the Databricks Databricks-Certified-Professional-Data-Engineer exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Certified-Professional-Data-Engineer exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Certified-Professional-Data-Engineer exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Data Engineer Professional Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Certified-Professional-Data-Engineer test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Certified-Professional-Data-Engineer practice exam demo.

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

An hourly batch job is configured to ingest data files from a cloud object storage container where each batch represent all records produced by the source system in a given hour. The batch job to process these records into the Lakehouse is sufficiently delayed to ensure no late-arriving data is missed. The user_id field represents a unique key for the data, which has the following schema:

user_id BIGINT, username STRING, user_utc STRING, user_region STRING, last_login BIGINT, auto_pay BOOLEAN, last_updated BIGINT

New records are all ingested into a table named account_history which maintains a full record of all data in the same schema as the source. The next table in the system is named account_current and is implemented as a Type 1 table representing the most recent value for each unique user_id.

Assuming there are millions of user accounts and tens of thousands of records processed hourly, which implementation can be used to efficiently update the described account_current table as part of each hourly batch job?

Options:

A.

Use Auto Loader to subscribe to new files in the account history directory; configure a Structured Streaminq trigger once job to batch update newly detected files into the account current table.

B.

Overwrite the account current table with each batch using the results of a query against the account history table grouping by user id and filtering for the max value of last updated.

C.

Filter records in account history using the last updated field and the most recent hour processed, as well as the max last iogin by user id write a merge statement to update or insert the most recent value for each user id.

D.

Use Delta Lake version history to get the difference between the latest version of account history and one version prior, then write these records to account current.

E.

Filter records in account history using the last updated field and the most recent hour processed, making sure to deduplicate on username; write a merge statement to update or insert the

most recent value for each username.

Buy Now
Question 2

A production workload incrementally applies updates from an external Change Data Capture feed to a Delta Lake table as an always-on Structured Stream job. When data was initially migrated for this table, OPTIMIZE was executed and most data files were resized to 1 GB. Auto Optimize and Auto Compaction were both turned on for the streaming production job. Recent review of data files shows that most data files are under 64 MB, although each partition in the table contains at least 1 GB of data and the total table size is over 10 TB.

Which of the following likely explains these smaller file sizes?

Options:

A.

Databricks has autotuned to a smaller target file size to reduce duration of MERGE operations

B.

Z-order indices calculated on the table are preventing file compaction

C Bloom filler indices calculated on the table are preventing file compaction

C.

Databricks has autotuned to a smaller target file size based on the overall size of data in the table

D.

Databricks has autotuned to a smaller target file size based on the amount of data in each partition

Question 3

To reduce storage and compute costs, the data engineering team has been tasked with curating a series of aggregate tables leveraged by business intelligence dashboards, customer-facing applications, production machine learning models, and ad hoc analytical queries.

The data engineering team has been made aware of new requirements from a customer-facing application, which is the only downstream workload they manage entirely. As a result, an aggregate table used by numerous teams across the organization will need to have a number of fields renamed, and additional fields will also be added.

Which of the solutions addresses the situation while minimally interrupting other teams in the organization without increasing the number of tables that need to be managed?

Options:

A.

Send all users notice that the schema for the table will be changing; include in the communication the logic necessary to revert the new table schema to match historic queries.

B.

Configure a new table with all the requisite fields and new names and use this as the source for the customer-facing application; create a view that maintains the original data schema and table name by aliasing select fields from the new table.

C.

Create a new table with the required schema and new fields and use Delta Lake's deep clone functionality to sync up changes committed to one table to the corresponding table.

D.

Replace the current table definition with a logical view defined with the query logic currently writing the aggregate table; create a new table to power the customer-facing application.

E.

Add a table comment warning all users that the table schema and field names will be changing on a given date; overwrite the table in place to the specifications of the customer-facing application.