Weekend Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0
Exam Name:
Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Certification:
Vendor:
Questions:
180
Last Updated:
Feb 7, 2026
Exam Status:
Stable
Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0

Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0: Databricks Certification Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 (Databricks Certified Associate Developer for Apache Spark 3.0 Exam) exam? Download the most recent Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 braindumps with answers that are 100% real. After downloading the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Associate Developer for Apache Spark 3.0 Exam) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Certified-Associate-Developer-for-Apache-Spark-3.0 practice exam demo.

Databricks Certified Associate Developer for Apache Spark 3.0 Exam Questions and Answers

Question 1

Which of the following code blocks returns a one-column DataFrame for which every row contains an array of all integer numbers from 0 up to and including the number given in column predError of

DataFrame transactionsDf, and null if predError is null?

Sample of DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.| 4| null| null| 3| 2|null|

8.| 5| null| null| null| 2|null|

9.| 6| 3| 2| 25| 2|null|

10.+-------------+---------+-----+-------+---------+----+

Options:

A.

1.def count_to_target(target):

2. if target is None:

3. return

4.

5. result = [range(target)]

6. return result

7.

8.count_to_target_udf = udf(count_to_target, ArrayType[IntegerType])

9.

10.transactionsDf.select(count_to_target_udf(col('predError')))

B.

1.def count_to_target(target):

2. if target is None:

3. return

4.

5. result = list(range(target))

6. return result

7.

8.transactionsDf.select(count_to_target(col('predError')))

C.

1.def count_to_target(target):

2. if target is None:

3. return

4.

5. result = list(range(target))

6. return result

7.

8.count_to_target_udf = udf(count_to_target, ArrayType(IntegerType()))

9.

10.transactionsDf.select(count_to_target_udf('predError'))

(Correct)

D.

1.def count_to_target(target):

2. result = list(range(target))

3. return result

4.

5.count_to_target_udf = udf(count_to_target, ArrayType(IntegerType()))

6.

7.df = transactionsDf.select(count_to_target_udf('predError'))

E.

1.def count_to_target(target):

2. if target is None:

3. return

4.

5. result = list(range(target))

6. return result

7.

8.count_to_target_udf = udf(count_to_target)

9.

10.transactionsDf.select(count_to_target_udf('predError'))

Buy Now
Question 2

In which order should the code blocks shown below be run in order to create a table of all values in column attributes next to the respective values in column supplier in DataFrame itemsDf?

1. itemsDf.createOrReplaceView("itemsDf")

2. spark.sql("FROM itemsDf SELECT 'supplier', explode('Attributes')")

3. spark.sql("FROM itemsDf SELECT supplier, explode(attributes)")

4. itemsDf.createOrReplaceTempView("itemsDf")

Options:

A.

4, 3

B.

1, 3

C.

2

D.

4, 2

E.

1, 2

Question 3

Which of the following code blocks produces the following output, given DataFrame transactionsDf?

Output:

1.root

2. |-- transactionId: integer (nullable = true)

3. |-- predError: integer (nullable = true)

4. |-- value: integer (nullable = true)

5. |-- storeId: integer (nullable = true)

6. |-- productId: integer (nullable = true)

7. |-- f: integer (nullable = true)

DataFrame transactionsDf:

1.+-------------+---------+-----+-------+---------+----+

2.|transactionId|predError|value|storeId|productId| f|

3.+-------------+---------+-----+-------+---------+----+

4.| 1| 3| 4| 25| 1|null|

5.| 2| 6| 7| 2| 2|null|

6.| 3| 3| null| 25| 3|null|

7.+-------------+---------+-----+-------+---------+----+

Options:

A.

transactionsDf.schema.print()

B.

transactionsDf.rdd.printSchema()

C.

transactionsDf.rdd.formatSchema()

D.

transactionsDf.printSchema()

E.

print(transactionsDf.schema)