Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Free and Premium Databricks Databricks-Generative-AI-Engineer-Associate Dumps Questions Answers

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.

Which will fulfill their need?

Options:

A.

context length 514; smallest model is 0.44GB and embedding dimension 768

B.

context length 2048: smallest model is 11GB and embedding dimension 2560

C.

context length 32768: smallest model is 14GB and embedding dimension 4096

D.

context length 512: smallest model is 0.13GB and embedding dimension 384

Buy Now
Question 2

A Generative AI Engineer is building a RAG application that will rely on context retrieved from source documents that are currently in PDF format. These PDFs can contain both text and images. They want to develop a solution using the least amount of lines of code.

Which Python package should be used to extract the text from the source documents?

Options:

A.

flask

B.

beautifulsoup

C.

unstructured

D.

numpy

Question 3

A team uses Mosaic AI Vector Search to retrieve documents for their Retrieval-Augmented Generation (RAG) pipeline. The search query returns five relevant documents, and the first three are added to the prompt as context. Performance evaluation with Agent Evaluation shows that some lower-ranked retrieved documents have higher context relevancy scores than higher-ranked documents. Which option should the team consider to optimize this workflow?

Options:

A.

Use a reranker to order the documents based on the relevance scores.

B.

Modify the prompt to instruct the LLM to order the documents based on the relevance scores.

C.

Use a different embedding model for computing document embeddings.

D.

Increase the number of documents added to the prompt to improve context relevance.

Question 4

What is the most suitable library for building a multi-step LLM-based workflow?

Options:

A.

Pandas

B.

TensorFlow

C.

PySpark

D.

LangChain

Question 5

A Generative AI Engineer has a provisioned throughput model serving endpoint as part of a RAG application and would like to monitor the serving endpoint’s incoming requests and outgoing responses. The current approach is to include a micro-service in between the endpoint and the user interface to write logs to a remote server.

Which Databricks feature should they use instead which will perform the same task?

Options:

A.

Vector Search

B.

Lakeview

C.

DBSQL

D.

Inference Tables

Question 6

A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planning which data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration:

call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time.

transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files.

call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use.

call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active.

maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.

They need sources that could add context to best identify ticket root cause and resolution.

Which TWO sources do that? (Choose two.)

Options:

A.

call_cust_history

B.

maintenance_schedule

C.

call_rep_history

D.

call_detail

E.

transcript Volume

Question 7

A Generative AI Engineer at an automotive company would like to build a question-answering chatbot to help customers answer specific questions about their vehicles. They have:

    A catalog with hundreds of thousands of cars manufactured since the 1960s

    Historical searches with user queries and successful matches

    Descriptions of their own cars in multiple languages

They have already selected an open-source LLM and created a test set of user queries. They need to discard techniques that will not help them build the chatbot. Which do they discard?

Options:

A.

Setting chunk size to match the model's context window to maximize coverage

B.

Implementing metadata filtering based on car models and years

C.

Fine-tuning an embedding model on automotive terminology

D.

Adding few-shot examples for response generation

Question 8

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

Options:

A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.

Question 9

A Generative AI Engineer received the following business requirements for an external chatbot.

The chatbot needs to know what types of questions the user asks and routes to appropriate models to answer the questions. For example, the user might ask about upcoming event details. Another user might ask about purchasing tickets for a particular event.

What is an ideal workflow for such a chatbot?

Options:

A.

The chatbot should only look at previous event information

B.

There should be two different chatbots handling different types of user queries.

C.

The chatbot should be implemented as a multi-step LLM workflow. First, identify the type of question asked, then route the question to the appropriate model. If it’s an upcoming event question, send the query to a text-to-SQL model. If it’s about ticket purchasing, the customer should be redirected to a payment platform.

D.

The chatbot should only process payments

Question 10

A Generative Al Engineer is developing a RAG system for their company to perform internal document Q&A for structured HR policies, but the answers returned are frequently incomplete and unstructured It seems that the retriever is not returning all relevant context The Generative Al Engineer has experimented with different embedding and response generating LLMs but that did not improve results.

Which TWO options could be used to improve the response quality?

Choose 2 answers

Options:

A.

Add the section header as a prefix to chunks

B.

Increase the document chunk size

C.

Split the document by sentence

D.

Use a larger embedding model

E.

Fine tune the response generation model

Question 11

A Generative AI Engineer is developing a patient-facing healthcare-focused chatbot. If the patient’s question is not a medical emergency, the chatbot should solicit more information from the patient to pass to the doctor’s office and suggest a few relevant pre-approved medical articles for reading. If the patient’s question is urgent, direct the patient to calling their local emergency services.

Given the following user input:

“I have been experiencing severe headaches and dizziness for the past two days.”

Which response is most appropriate for the chatbot to generate?

Options:

A.

Here are a few relevant articles for your browsing. Let me know if you have questions after reading them.

B.

Please call your local emergency services.

C.

Headaches can be tough. Hope you feel better soon!

D.

Please provide your age, recent activities, and any other symptoms you have noticed along with your headaches and dizziness.

Question 12

A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output “In Stock” if the product is available or only the term “Out of Stock” if not.

Which prompt will work to allow the engineer to respond to call classification labels correctly?

Options:

A.

Respond with “In Stock” if the customer asks for a product.

B.

You will be given a customer call transcript where the customer asks about product availability. The outputs are either “In Stock” or “Out of Stock”. Format the output in JSON, for example: {“call_id”: “123”, “label”: “In Stock”}.

C.

Respond with “Out of Stock” if the customer asks for a product.

D.

You will be given a customer call transcript where the customer inquires about product availability. Respond with “In Stock” if the product is available or “Out of Stock” if not.

Question 13

A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.

Which model fits this need?

Options:

A.

DistilBERT

B.

MPT-30B

C.

Llama2-70B

D.

DBRX

Question 14

All of the following are Python APIs used to query Databricks foundation models. When running in an interactive notebook, which of the following libraries does not automatically use the current session credentials?

Options:

A.

OpenAI client

B.

REST API via requests library

C.

MLflow Deployments SDK

D.

Databricks Python SDK

Question 15

A Generative Al Engineer is helping a cinema extend its website's chat bot to be able to respond to questions about specific showtimes for movies currently playing at their local theater. They already have the location of the user provided by location services to their agent, and a Delta table which is continually updated with the latest showtime information by location. They want to implement this new capability In their RAG application.

Which option will do this with the least effort and in the most performant way?

Options:

A.

Create a Feature Serving Endpoint from a FeatureSpec that references an online store synced from the Delta table. Query the Feature Serving Endpoint as part of the agent logic / tool implementation.

B.

Query the Delta table directly via a SQL query constructed from the user's input using a text-to-SQL LLM in the agent logic / tool

C.

implementation. Write the Delta table contents to a text column.then embed those texts using an embedding model and store these in the vector index Look

up the information based on the embedding as part of the agent logic / tool implementation.

D.

Set up a task in Databricks Workflows to write the information in the Delta table periodically to an external database such as MySQL and query the information from there as part of the agent logic / tool implementation.

Question 16

What is an effective method to preprocess prompts using custom code before sending them to an LLM?

Options:

A.

Directly modify the LLM’s internal architecture to include preprocessing steps

B.

It is better not to introduce custom code to preprocess prompts as the LLM has not been trained with examples of the preprocessed prompts

C.

Rather than preprocessing prompts, it’s more effective to postprocess the LLM outputs to align the outputs to desired outcomes

D.

Write a MLflow PyFunc model that has a separate function to process the prompts

Question 17

A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system’s performance and understand where to focus their efforts to further improve the system.

How should the Generative AI Engineer evaluate the system?

Options:

A.

Use cosine similarity score to comprehensively evaluate the quality of the final generated answers.

B.

Curate a dataset that can test the retrieval and generation components of the system separately. Use MLflow’s built in evaluation metrics to perform the evaluation on the retrieval and generation components.

C.

Benchmark multiple LLMs with the same data and pick the best LLM for the job.

D.

Use an LLM-as-a-judge to evaluate the quality of the final answers generated.

Question 18

A Generative AI Engineer is creating an agent-based LLM system for their favorite monster truck team. The system can answer text based questions about the monster truck team, lookup event dates via an API call, or query tables on the team’s latest standings.

How could the Generative AI Engineer best design these capabilities into their system?

Options:

A.

Ingest PDF documents about the monster truck team into a vector store and query it in a RAG architecture.

B.

Write a system prompt for the agent listing available tools and bundle it into an agent system that runs a number of calls to solve a query.

C.

Instruct the LLM to respond with “RAG”, “API”, or “TABLE” depending on the query, then use text parsing and conditional statements to resolve the query.

D.

Build a system prompt with all possible event dates and table information in the system prompt. Use a RAG architecture to lookup generic text questions and otherwise leverage the information in the system prompt.

Question 19

A Generative Al Engineer wants their (inetuned LLMs in their prod Databncks workspace available for testing in their dev workspace as well. All of their workspaces are Unity Catalog enabled and they are currently logging their models into the Model Registry in MLflow.

What is the most cost-effective and secure option for the Generative Al Engineer to accomplish their gAi?

Options:

A.

Use an external model registry which can be accessed from all workspaces

B.

Setup a script to export the model from prod and import it to dev.

C.

Setup a duplicate training pipeline in dev, so that an identical model is available in dev.

D.

Use MLflow to log the model directly into Unity Catalog, and enable READ access in the dev workspace to the model.

Question 20

A Generative AI Engineer is designing a chatbot for a gaming company that aims to engage users on its platform while its users play online video games.

Which metric would help them increase user engagement and retention for their platform?

Options:

A.

Randomness

B.

Diversity of responses

C.

Lack of relevance

D.

Repetition of responses

Question 21

When developing an LLM application, it’s crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.

Which action is NOT appropriate to avoid legal risks?

Options:

A.

Reach out to the data curators directly before you have started using the trained model to let them know.

B.

Use any available data you personally created which is completely original and you can decide what license to use.

C.

Only use data explicitly labeled with an open license and ensure the license terms are followed.

D.

Reach out to the data curators directly after you have started using the trained model to let them know.