Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

Databricks Databricks-Machine-Learning-Professional Exam With Confidence Using Practice Dumps

Exam Code:
Databricks-Machine-Learning-Professional
Exam Name:
Databricks Certified Machine Learning Professional
Certification:
Vendor:
Questions:
60
Last Updated:
Feb 17, 2026
Exam Status:
Stable
Databricks Databricks-Machine-Learning-Professional

Databricks-Machine-Learning-Professional: ML Data Scientist Exam 2025 Study Guide Pdf and Test Engine

Are you worried about passing the Databricks Databricks-Machine-Learning-Professional (Databricks Certified Machine Learning Professional) exam? Download the most recent Databricks Databricks-Machine-Learning-Professional braindumps with answers that are 100% real. After downloading the Databricks Databricks-Machine-Learning-Professional exam dumps training , you can receive 99 days of free updates, making this website one of the best options to save additional money. In order to help you prepare for the Databricks Databricks-Machine-Learning-Professional exam questions and verified answers by IT certified experts, CertsTopics has put together a complete collection of dumps questions and answers. To help you prepare and pass the Databricks Databricks-Machine-Learning-Professional exam on your first attempt, we have compiled actual exam questions and their answers. 

Our (Databricks Certified Machine Learning Professional) Study Materials are designed to meet the needs of thousands of candidates globally. A free sample of the CompTIA Databricks-Machine-Learning-Professional test is available at CertsTopics. Before purchasing it, you can also see the Databricks Databricks-Machine-Learning-Professional practice exam demo.

Databricks Certified Machine Learning Professional Questions and Answers

Question 1

Which of the following is a benefit of logging a model signature with an MLflow model?

Options:

A.

The model will have a unique identifier in the MLflow experiment

B.

The schema of input data can be validated when serving models

C.

The model can be deployed using real-time serving tools

D.

The model will be secured by the user that developed it

E.

The schema of input data will be converted to match the signature

Buy Now
Question 2

A machine learning engineer has developed a model and registered it using the FeatureStoreClient fs. The model has model URI model_uri. The engineer now needs to perform batch inference on customer-level Spark DataFrame spark_df, but it is missing a few of the static features that were used when training the model. The customer_id column is the primary key of spark_df and the training set used when training and logging the model.

Which of the following code blocks can be used to compute predictions for spark_df when the missing feature values can be found in the Feature Store by searching for features by customer_id?

Options:

A.

df = fs.get_missing_features(spark_df, model_uri)

fs.score_model(model_uri, df)

B.

fs.score_model(model_uri, spark_df)

C.

df = fs.get_missing_features(spark_df, model_uri)

fs.score_batch(model_uri, df)

df = fs.get_missing_features(spark_df)

D.

fs.score_batch(model_uri, df)

E.

fs.score_batch(model_uri, spark_df)

Question 3

A data scientist is using MLflow to track their machine learning experiment. As a part of each MLflow run, they are performing hyperparameter tuning. The data scientist would like to have one parent run for the tuning process with a child run for each unique combination of hyperparameter values.

They are using the following code block:

The code block is not nesting the runs in MLflow as they expected.

Which of the following changes does the data scientist need to make to the above code block so that it successfully nests the child runs under the parent run in MLflow?

Options:

A.

Indent the child run blocks within the parent run block

B.

Add the nested=True argument to the parent run

C.

Remove the nested=True argument from the child runs

D.

Provide the same name to the run name parameter for all three run blocks

E.

Add the nested=True argument to the parent run and remove the nested=True arguments from the child runs