A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system’s performance and understand where to focus their efforts to further improve the system.
How should the Generative AI Engineer evaluate the system?
A Generative AI Engineer is creating an agent-based LLM system for their favorite monster truck team. The system can answer text based questions about the monster truck team, lookup event dates via an API call, or query tables on the team’s latest standings.
How could the Generative AI Engineer best design these capabilities into their system?
A Generative Al Engineer wants their (inetuned LLMs in their prod Databncks workspace available for testing in their dev workspace as well. All of their workspaces are Unity Catalog enabled and they are currently logging their models into the Model Registry in MLflow.
What is the most cost-effective and secure option for the Generative Al Engineer to accomplish their gAi?
A Generative AI Engineer is designing a chatbot for a gaming company that aims to engage users on its platform while its users play online video games.
Which metric would help them increase user engagement and retention for their platform?