A company has a customer service application that uses Amazon Bedrock to generate personalized responses to customer inquiries. The company needs to establish a quality assurance process to evaluate prompt effectiveness and model configurations across updates. The process must automatically compare outputs from multiple prompt templates, detect response quality issues, provide quantitative metrics, and allow human reviewers to give feedback on responses. The process must prevent configurations that do not meet a predefined quality threshold from being deployed.
Which solution will meet these requirements?
A publishing company is developing a chat assistant that uses a containerized large language model (LLM) that runs on Amazon SageMaker AI. The architecture consists of an Amazon API Gateway REST API that routes user requests to an AWS Lambda function. The Lambda function invokes a SageMaker AI real-time endpoint that hosts the LLM.
Users report uneven response times. Analytics show that a high number of chats are abandoned after 2 seconds of waiting for the first token. The company wants a solution to ensure that p95 latency is under 800 ms for interactive requests to the chat assistant.
Which combination of solutions will meet this requirement? (Select TWO.)
A company is developing a customer communication platform that uses an AI assistant powered by an Amazon Bedrock foundation model (FM). The AI assistant summarizes customer messages and generates initial response drafts.
The company wants to use Amazon Comprehend to implement layered content filtering. The layered content filtering must prevent sharing of offensive content, protect customer privacy, and detect potential inappropriate advice solicitation. Inappropriate advice solicitation includes requests for unethical practices, harmful activities, or manipulative behaviors.
The solution must maintain acceptable overall response times, so all pre-processing filters must finish before the content reaches the FM.
Which solution will meet these requirements?
A company uses Amazon Bedrock to build a Retrieval Augmented Generation (RAG) system. The RAG system uses an Amazon Bedrock Knowledge Bases that is based on an Amazon S3 bucket as the data source for emergency news video content. The system retrieves transcripts, archived reports, and related documents from the S3 bucket.
The RAG system uses state-of-the-art embedding models and a high-performing retrieval setup. However, users report slow responses and irrelevant results, which cause decreased user satisfaction. The company notices that vector searches are evaluating too many documents across too many content types and over long periods of time.
The company determines that the underlying models will not benefit from additional fine-tuning. The company must improve retrieval accuracy by applying smarter constraints and wants a solution that requires minimal changes to the existing architecture.
Which solution will meet these requirements?