Spring Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: save70

AIP-C01 Leak Questions

Page: 3 / 8
Total 107 questions

AWS Certified Generative AI Developer - Professional Questions and Answers

Question 9

A university recently digitized a collection of archival documents, academic journals, and manuscripts. The university stores the digital files in an AWS Lake Formation data lake.

The university hires a GenAI developer to build a solution to allow users to search the digital files by using text queries. The solution must return journal abstracts that are semantically similar to a user's query. Users must be able to search the digitized collection based on text and metadata that is associated with the journal abstracts. The metadata of the digitized files does not contain keywords. The solution must match similar abstracts to one another based on the similarity of their text. The data lake contains fewer than 1 million files.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Titan Embeddings in Amazon Bedrock to create vector representations of the digitized files. Store embeddings in the OpenSearch Neural plugin for Amazon OpenSearch Service.

B.

Use Amazon Comprehend to extract topics from the digitized files. Store the topics and file metadata in an Amazon Aurora PostgreSQL database. Query the abstract metadata against the data in the Aurora database.

C.

Use Amazon SageMaker AI to deploy a sentence-transformer model. Use the model to create vector representations of the digitized files. Store embeddings in an Amazon Aurora PostgreSQL database that has the pgvector extension.

D.

Use Amazon Titan Embeddings in Amazon Bedrock to create vector representations of the digitized files. Store embeddings in an Amazon Aurora PostgreSQL Serverless database that has the pgvector extension.

Question 10

A company provides a service that helps users from around the world discover new restaurants. The service has 50 million monthly active users. The company wants to implement a semantic search solution across a database that contains 20 million restaurants and 200 million reviews. The company currently stores the data in PostgreSQL.

The solution must support complex natural language queries and return results for at least 95% of queries within 500 ms. The solution must maintain data freshness for restaurant details that update hourly. The solution must also scale cost-effectively during peak usage periods.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Migrate the restaurant data to Amazon OpenSearch Service. Implement keyword-based search rules that use custom analyzers and relevance tuning to find restaurants based on attributes such as cuisine type, features, and location. Create Amazon API Gateway HTTP API endpoints to transform user queries into structured search parameters.

B.

Migrate the restaurant data to Amazon OpenSearch Service. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant descriptions, reviews, and menu items. When users submit natural language queries, convert the queries to embeddings by using the same FM. Perform k-nearest neighbors (k-NN) searches to find semantically similar results.

C.

Keep the restaurant data in PostgreSQL and implement a pgvector extension. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant data. Store the vector embeddings directly in PostgreSQL. Create an AWS Lambda function to convert natural language queries to vector representations by using the same FM. Configure the Lambda function to perform similarity searches within the database.

D.

Migrate restaurant data to an Amazon Bedrock knowledge base by using a custom ingestion pipeline. Configure the knowledge base to automatically generate embeddings from restaurant information. Use the Amazon Bedrock Retrieve API with built-in vector search capabilities to query the knowledge base directly by using natural language input.

Question 11

A company provides a service that helps users from around the world discover new restaurants. The service has 50 million monthly active users. The company wants to implement a semantic search solution across a database that contains 20 million restaurants and 200 million reviews. The company currently stores the data in a PostgreSQL database.

The solution must support complex natural language queries and return results for at least 95% of queries within 500 ms. The solution must maintain data freshness for restaurant details that update hourly. The solution must also scale cost-effectively during peak usage periods.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Migrate the restaurant data to Amazon OpenSearch Service. Implement keyword-based search rules that use custom analyzers and relevance tuning to find restaurants based on attributes such as cuisine type, feature, and location. Create Amazon API Gateway HTTP API endpoints to transform user queries into structured search parameters.

B.

Migrate the restaurant data to Amazon OpenSearch Service. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant descriptions, reviews, and menu items. When users submit natural language queries, convert the queries to embeddings by using the same FM. Perform k-nearest neighbors (k-NN) searches to find semantically similar results.

C.

Keep the restaurant data in PostgreSQL and implement a pgvector extension. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant data. Store the vector embeddings directly in PostgreSQL. Create an AWS Lambda function to convert natural language queries to vector representations by using the same FM. Configure the Lambda function to perform similarity searches within the database.

D.

Migrate the restaurant data to an Amazon Bedrock knowledge base by using a custom ingestion pipeline. Configure the knowledge base to automatically generate embeddings from restaurant information. Use the Amazon Bedrock Retrieve API with built-in vector search capabilities to query the knowledge base directly by using natural language input.

Question 12

A company is building a serverless application that uses AWS Lambda functions to help students around the world summarize notes. The application uses Anthropic Claude through Amazon Bedrock. The company observes that most of the traffic occurs during evenings in each time zone. Users report experiencing throttling errors during peak usage times in their time zones.

The company needs to resolve the throttling issues by ensuring continuous operation of the application. The solution must maintain application performance quality and must not require a fixed hourly cost during low traffic periods.

Which solution will meet these requirements?

Options:

A.

Create custom Amazon CloudWatch metrics to monitor model errors. Set provisioned throughput to a value that is safely higher than the peak traffic observed.

B.

Create custom Amazon CloudWatch metrics to monitor model errors. Set up a failover mechanism to redirect invocations to a backup AWS Region when the errors exceed a specified threshold.

C.

Enable invocation logging in Amazon Bedrock. Monitor key metrics such as Invocations, InputTokenCount, OutputTokenCount, and InvocationThrottles. Distribute traffic across cross-Region inference endpoints.

D.

Enable invocation logging in Amazon Bedrock. Monitor InvocationLatency, InvocationClientErrors, and InvocationServerErrors metrics. Distribute traffic across multiple versions of the same model.

Page: 3 / 8
Total 107 questions